Back to Search Start Over

Self-Priming Enzymatic Fabrication of Multiply Modified DNA

Authors :
Bernard A. Connolly
Rachel C. Little
Eimer Tuite
Kasid Khan
Andrew R. Pike
Colette J. Whitfield
Kuniharu Ijiro
Source :
Chemistry-A European Journal
Publication Year :
2018
Publisher :
Zenodo, 2018.

Abstract

The self-priming synthesis of multiply modified DNA by the extension of repeating unit duplex “oligoseeds” provides a source of versatile DNA. Sterically-demanding nucleotides 5-Br-dUTP, 7-deaza-7-I-dATP, 6-S-dGTP, 5-I-dCTP as well as 5-(octadiynyl)-dCTP were incorporated into two extending oligoseeds; [GATC]5/[GATC]5 and [A4G]4/[CT4]4. The products contained modifications on one or both strands of DNA, demonstrating their recognition by the polymerase as both template (reading) and substrate (writing). Nucleobase modifications that lie in the major groove were reliably read and written by the polymerase during the extension reaction, even when bulky or in contiguous sequences. Repeat sequence DNA over 500 bp long, bearing four different modified units was produced by this method. The number, position and type of modification, as well as the overall length of the DNA can be controlled to yield designer DNA that offers sequence-determined sites for further chemical adaptations, targeted small molecule binding studies, or sensing and sequencing applications.

Details

Language :
English
Database :
OpenAIRE
Journal :
Chemistry-A European Journal
Accession number :
edsair.doi.dedup.....4a0d6c0a07f43ce95ee506c74309e1b7