Back to Search Start Over

Role of bacteriophage T4 baseplate in regulating assembly and infection

Authors :
David Veesler
Jeffrey A. Speir
Andrei Fokine
Thomas Klose
Moh Lan Yap
Fumio Arisaka
Michael G. Rossmann
Source :
Proceedings of the National Academy of Sciences. 113:2654-2659
Publication Year :
2016
Publisher :
Proceedings of the National Academy of Sciences, 2016.

Abstract

Bacteriophage T4 consists of a head for protecting its genome and a sheathed tail for inserting its genome into a host. The tail terminates with a multiprotein baseplate that changes its conformation from a "high-energy" dome-shaped to a "low-energy" star-shaped structure during infection. Although these two structures represent different minima in the total energy landscape of the baseplate assembly, as the dome-shaped structure readily changes to the star-shaped structure when the virus infects a host bacterium, the dome-shaped structure must have more energy than the star-shaped structure. Here we describe the electron microscopy structure of a 3.3-MDa in vitro-assembled star-shaped baseplate with a resolution of 3.8 Å. This structure, together with other genetic and structural data, shows why the high-energy baseplate is formed in the presence of the central hub and how the baseplate changes to the low-energy structure, via two steps during infection. Thus, the presence of the central hub is required to initiate the assembly of metastable, high-energy structures. If the high-energy structure is formed and stabilized faster than the low-energy structure, there will be insufficient components to assemble the low-energy structure.

Details

ISSN :
10916490 and 00278424
Volume :
113
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....4a37f54048e1ff53f3cde8fe6666f1da