Back to Search
Start Over
On the Modular Computation of Gröbner Bases with Integer Coefficients
- Source :
- Journal of Mathematical Sciences, Journal of Mathematical Sciences, Springer Verlag (Germany), 2014, 200 (6), pp.722-724, Journal of Mathematical Sciences, 2014, 200 (6), pp.722-724
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- Let I1 ⊂ I2 ⊂ . . . be an increasing sequence of ideals of the ring Z[X], X = (x1, . . . , xn), and let I be their union. We propose an algorithm to compute the Gr¨obner base of I under the assumption that the Gr¨obner bases of the ideal QI of the ring Q[X] and of the ideals I ⊗ (Z/mZ) of the rings (Z/mZ)[X] are known. Such an algorithmic problem arises, for example, in the construction of Markov and semi-Markov traces on cubic Hecke algebras.
- Subjects :
- Statistics and Probability
Discrete mathematics
Ring (mathematics)
Sequence
Mathematics::Commutative Algebra
Markov chain
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
Applied Mathematics
General Mathematics
Computation
010102 general mathematics
010103 numerical & computational mathematics
16. Peace & justice
Base (topology)
01 natural sciences
Combinatorics
Integer
Ideal (ring theory)
[MATH]Mathematics [math]
0101 mathematics
ComputingMilieux_MISCELLANEOUS
Monomial order
Mathematics
Subjects
Details
- ISSN :
- 15738795 and 10723374
- Volume :
- 200
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Sciences
- Accession number :
- edsair.doi.dedup.....4a4a8f048022fcb8b61c7d9815c5a4b0
- Full Text :
- https://doi.org/10.1007/s10958-014-1964-2