Back to Search Start Over

Spike sorting by stochastic simulation

Authors :
Dario Farina
Di Ge
Jérôme Idier
E. Le Carpentier
Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN)
Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN)
Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)
Ge, Di
Source :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2011, 19 (3), pp.249-59. ⟨10.1109/TNSRE.2011.2112780⟩, Ge, D, Le Carpentier, E, Idier, J & Farina, D 2011, Spike sorting by stochastic simulation . in Proceedings Ninth Göttingen Meeting of the German Neuroscience Society and 33rd Göttingen Neurobiology Conference, 23-27 March 2011, Göttingen, Germany . Neurowissenschaftliche Gesellschaft, pp. No. T26-8C, Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, 23/03/2011 . < http://www.nwg-goettingen.de/2011/upload/file/Proceedings_2011.pdf >, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19 (3), pp.249-59. ⟨10.1109/TNSRE.2011.2112780⟩
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; The decomposition of multiunit signals consists of the restoration of spike trains and action potentials in neural or muscular recordings. Because of the complexity of automatic decomposition, semiautomatic procedures are sometimes chosen. The main difficulty in automatic decomposition is the resolution of temporally overlapped potentials. In a previous study , we proposed a Bayesian model coupled with a maximum a posteriori (MAP) estimator for fully automatic decomposition of multiunit recordings and we showed applications to intramuscular EMG signals. In this study, we propose a more complex signal model that includes the variability in amplitude of each unit potential. Moreover, we propose the Markov Chain Monte Carlo (MCMC) simulation and a Bayesian minimum mean square error (MMSE) estimator by averaging on samples that converge in distribution to the joint posterior law. We prove the convergence property of this approach mathematically and we test the method representatively on intramuscular multiunit recordings. The results showed that its average accuracy in spike identification is greater than 90% for intramuscular signals with up to 8 concurrently active units. In addition to intramuscular signals, the method can be applied for spike sorting of other types of multiunit recordings.

Details

Language :
English
ISSN :
15344320 and 15580210
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2011, 19 (3), pp.249-59. ⟨10.1109/TNSRE.2011.2112780⟩, Ge, D, Le Carpentier, E, Idier, J &amp; Farina, D 2011, Spike sorting by stochastic simulation . in Proceedings Ninth G&#246;ttingen Meeting of the German Neuroscience Society and 33rd G&#246;ttingen Neurobiology Conference, 23-27 March 2011, G&#246;ttingen, Germany . Neurowissenschaftliche Gesellschaft, pp. No. T26-8C, G&#246;ttingen Meeting of the German Neuroscience Society, G&#246;ttingen, Germany, 23/03/2011 . < http://www.nwg-goettingen.de/2011/upload/file/Proceedings_2011.pdf >, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19 (3), pp.249-59. ⟨10.1109/TNSRE.2011.2112780⟩
Accession number :
edsair.doi.dedup.....4a5342d6de94bfe64066b6283eb0e3a1
Full Text :
https://doi.org/10.1109/TNSRE.2011.2112780⟩