Back to Search
Start Over
Double series expression for the Stieltjes constants
- Source :
- Analysis. 31:211-219
- Publication Year :
- 2011
- Publisher :
- Walter de Gruyter GmbH, 2011.
-
Abstract
- We present expressions in terms of a double infinite series for the Stieltjes constants $\gamma_k(a)$. These constants appear in the regular part of the Laurent expansion for the Hurwitz zeta function. We show that the case $\gamma_k(1)=\gamma$ corresponds to a series representation for the Riemann zeta function given much earlier by Brun. As a byproduct, we obtain a parameterized double series representation of the Hurwitz zeta function.<br />Comment: 12 pages, no figures, updated and typos corrected; to appear in Analysis
- Subjects :
- Numerical Analysis
Series (mathematics)
Mathematics::Number Theory
Applied Mathematics
Laurent series
Stieltjes constants
FOS: Physical sciences
Parameterized complexity
Mathematical Physics (math-ph)
Expression (mathematics)
Riemann zeta function
Hurwitz zeta function
symbols.namesake
11M06, 11Y60, 11M35
symbols
Mathematical Physics
Analysis
Mathematical physics
Mathematics
Subjects
Details
- ISSN :
- 01744747
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Analysis
- Accession number :
- edsair.doi.dedup.....4b0f5b2ac631e6384613eab5c2e55c4c
- Full Text :
- https://doi.org/10.1524/anly.2011.1118