Back to Search Start Over

Mitochondrial Complex II Dysfunction Can Contribute Significantly to Genomic Instability after Exposure to Ionizing Radiation

Authors :
Disha Dayal
Prabhat C. Goswami
Sean M. Martin
Yueming Zhu
Debkumar Pain
Kjerstin M. Owens
Douglas R. Spitz
Charles L. Limoli
Frederick E. Domann
Nukhet Aykin-Burns
Amutha Boominathan
Source :
Radiation Research. 172:737-745
Publication Year :
2009
Publisher :
Radiation Research Society, 2009.

Abstract

Ionizing radiation induces chronic metabolic oxidative stress and a mutator phenotype in hamster fibroblasts that is mediated by H(2)O(2), but the intracellular source of H(2)O(2) is not well defined. To determine the role of mitochondria in the radiation-induced mutator phenotype, end points of mitochondrial function were determined in unstable (CS-9 and LS-12) and stable (114) hamster fibroblast cell lines derived from GM10115 cells exposed to 10 Gy X rays. Cell lines isolated after irradiation demonstrated a 20-40% loss of mitochondrial membrane potential and an increase in mitochondrial content compared to the parental cell line GM10115. Surprisingly, no differences were observed in steady-state levels of ATP (P0.05). Unstable clones demonstrated increased oxygen consumption (two- to threefold; CS-9) and/or increased mitochondrial electron transport chain (ETC) complex II activity (twofold; LS-12). Using Western blot analysis and Blue Native gel electrophoresis, a significant increase in complex II subunit B protein levels was observed in LS-12 cells. Furthermore, immunoprecipitation assays revealed evidence of abnormal complex II assembly in LS-12 cells. Treatment of LS-12 cells with an inhibitor of ETC complex II (thenoyltrifluoroacetone) resulted in significant decreases in the steady-state levels of H(2)O(2) and a 50% reduction in mutation frequency as well as a 16% reduction in CAD gene amplification frequency. These data show that radiation-induced genomic instability was accompanied by evidence of mitochondrial dysfunction leading to increased steady-state levels of H(2)O(2) that contributed to increased mutation frequency and gene amplification. These results support the hypothesis that mitochondrial dysfunction originating from complex II can contribute to radiation-induced genomic instability by increasing steady-state levels of reactive oxygen species.

Details

ISSN :
19385404 and 00337587
Volume :
172
Database :
OpenAIRE
Journal :
Radiation Research
Accession number :
edsair.doi.dedup.....4b51f555c301a7358e6b9eef61ceaf16
Full Text :
https://doi.org/10.1667/rr1617.1