Back to Search Start Over

Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram

Authors :
Zachi I. Attia
Naveen L. Pereira
Anneli Svensson
Francisco Fernández-Avilés
Thomas F Luescher
Raja Sekhar Madathala
Jozef Bartunek
John Halamka
Henrik Jensen
Francisco Lopez Jimenez
Paari Dominic
Pyotr G. Platonov
Domenico Zagari
Pahlajani Db
Nikhita R Chennaiah Gari
Marco Merlo
Darryl D Esakof
Vladan Vukomanovic
John Signorino
Daniel C. DeSimone
Gianfranco Sinagra
Stefan Janssens
Kevin P. Cohoon
Francis J. Alenghat
Jennifer L. Dugan
Karl Dujardin
Melody Hermel
Michael E. Farkouh
Goran Loncar
Sanjiv M. Narayan
Suraj Kapa
Deepak Padmanabhan
Karam Turk-Adawi
Rickey E. Carter
Paul A. Friedman
Carolyn Lam Su Ping
Fahad Gul
Amit Noheria
Nidal Asaad
Arun Sridhar
Gaetano Antonio Lanza
Peter A. Noseworthy
Nicholas S. Peters
Marc K. Lahiri
Jessica Cruz
Brenda D Rodriguez Escenaro
Gaurav A. Upadhyay
Jose Alberto Pardo Gutierrez
Attia, Z. I.
Kapa, S.
Dugan, J.
Pereira, N.
Noseworthy, P. A.
Jimenez, F. L.
Cruz, J.
Carter, R. E.
Desimone, D. C.
Signorino, J.
Halamka, J.
Chennaiah Gari, N. R.
Madathala, R. S.
Platonov, P. G.
Gul, F.
Janssens, S. P.
Narayan, S.
Upadhyay, G. A.
Alenghat, F. J.
Lahiri, M. K.
Dujardin, K.
Hermel, M.
Dominic, P.
Turk-Adawi, K.
Asaad, N.
Svensson, A.
Fernandez-Aviles, F.
Esakof, D. D.
Bartunek, J.
Noheria, A.
Sridhar, A. R.
Lanza, G. A.
Cohoon, K.
Padmanabhan, D.
Pardo Gutierrez, J. A.
Sinagra, G.
Merlo, M.
Zagari, D.
Rodriguez Escenaro, B. D.
Pahlajani, D. B.
Loncar, G.
Vukomanovic, V.
Jensen, H. K.
Farkouh, M. E.
Luescher, T. F.
Su Ping, C. L.
Peters, N. S.
Friedman, P. A.
Source :
Mayo Clinic Proceedings, Discover Consortium (Digital and Noninvasive Screening for COVID-19 with AI ECG Repository) 2021, ' Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram ', Mayo Clinic Proceedings, vol. 96, no. 8, pp. 2081-2094 . https://doi.org/10.1016/j.mayocp.2021.05.027, Attia, Z I, Kapa, S, Dugan, J, Pereira, N, Noseworthy, P A, Jimenez, F L, Cruz, J, Carter, R E, DeSimone, D C, Signorino, J, Halamka, J, Chennaiah Gari, N R, Madathala, R S, Platonov, P G, Gul, F, Janssens, S P, Narayan, S, Upadhyay, G A, Alenghat, F J, Lahiri, M K, Dujardin, K, Hermel, M, Dominic, P, Turk-Adawi, K, Asaad, N, Svensson, A, Fernandez-Aviles, F, Esakof, D D, Bartunek, J, Noheria, A, Sridhar, A R, Lanza, G A, Cohoon, K, Padmanabhan, D, Pardo Gutierrez, J A, Sinagra, G, Merlo, M, Zagari, D, Rodriguez Escenaro, B D, Pahlajani, D B, Loncar, G, Vukomanovic, V, Jensen, H K, Farkouh, M E, Luescher, T F, Su Ping, C L, Peters, N S, Friedman, P A & Discover Consortium (Digital and Noninvasive Screening for COVID-19 with AI ECG Repository) 2021, ' Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram ', Mayo Clinic Proceedings, vol. 96, no. 8, pp. 2081-2094 . https://doi.org/10.1016/j.mayocp.2021.05.027
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

OBJECTIVE: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG).METHODS: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction-confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site.RESULTS: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%.CONCLUSION: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence-enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control.

Details

Language :
English
Database :
OpenAIRE
Journal :
Mayo Clinic Proceedings, Discover Consortium (Digital and Noninvasive Screening for COVID-19 with AI ECG Repository) 2021, ' Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram ', Mayo Clinic Proceedings, vol. 96, no. 8, pp. 2081-2094 . https://doi.org/10.1016/j.mayocp.2021.05.027, Attia, Z I, Kapa, S, Dugan, J, Pereira, N, Noseworthy, P A, Jimenez, F L, Cruz, J, Carter, R E, DeSimone, D C, Signorino, J, Halamka, J, Chennaiah Gari, N R, Madathala, R S, Platonov, P G, Gul, F, Janssens, S P, Narayan, S, Upadhyay, G A, Alenghat, F J, Lahiri, M K, Dujardin, K, Hermel, M, Dominic, P, Turk-Adawi, K, Asaad, N, Svensson, A, Fernandez-Aviles, F, Esakof, D D, Bartunek, J, Noheria, A, Sridhar, A R, Lanza, G A, Cohoon, K, Padmanabhan, D, Pardo Gutierrez, J A, Sinagra, G, Merlo, M, Zagari, D, Rodriguez Escenaro, B D, Pahlajani, D B, Loncar, G, Vukomanovic, V, Jensen, H K, Farkouh, M E, Luescher, T F, Su Ping, C L, Peters, N S, Friedman, P A & Discover Consortium (Digital and Noninvasive Screening for COVID-19 with AI ECG Repository) 2021, ' Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram ', Mayo Clinic Proceedings, vol. 96, no. 8, pp. 2081-2094 . https://doi.org/10.1016/j.mayocp.2021.05.027
Accession number :
edsair.doi.dedup.....4b5f43704c42a63d316a8b40bd2eedfc
Full Text :
https://doi.org/10.1016/j.mayocp.2021.05.027