Back to Search Start Over

Marine biofilms constitute a bank of hidden microbial diversity and functional potential

Authors :
Bite Pei
Nicole S. Webster
Chun Kit Tam
Vladimir B. Bajic
Hongbin Liu
Ruojun Wang
Yongxin Li
Yanhong Lu
Ho Yin Chiang
Weipeng Zhang
Pei-Yuan Qian
He Fu
Jin Sun
Pok Man Leung
Wei Ding
Salim Bougouffa
Source :
Nature Communications, Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Publication Year :
2019
Publisher :
Nature Publishing Group UK, 2019.

Abstract

Recent big data analyses have illuminated marine microbial diversity from a global perspective, focusing on planktonic microorganisms. Here, we analyze 2.5 terabases of newly sequenced datasets and the Tara Oceans metagenomes to study the diversity of biofilm-forming marine microorganisms. We identify more than 7,300 biofilm-forming ‘species’ that are undetected in seawater analyses, increasing the known microbial diversity in the oceans by more than 20%, and provide evidence for differentiation across oceanic niches. Generation of a gene distribution profile reveals a functional core across the biofilms, comprised of genes from a variety of microbial phyla that may play roles in stress responses and microbe-microbe interactions. Analysis of 479 genomes reconstructed from the biofilm metagenomes reveals novel biosynthetic gene clusters and CRISPR-Cas systems. Our data highlight the previously underestimated ocean microbial diversity, and allow mining novel microbial lineages and gene resources.<br />Previous surveys of global ocean microbial diversity have focused on planktonic microbes. Here, Zhang et al. use metagenomics to study biofilm-forming marine microbes, increasing the known microbial diversity in the oceans by more than 20% and revealing new biosynthetic gene clusters and CRISPR-Cas systems.

Details

Language :
English
ISSN :
20411723
Volume :
10
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....4b97b0caaa6a689b99d066d065bd0196