Back to Search Start Over

Atomic-level evolutionary information improves protein–protein interface scoring

Authors :
Raphael Guerois
Chloé Quignot
Pierre Granger
Pablo Chacón
Jessica Andreani
Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Instituto de Química Física Rocasolano (IQFR)
Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
ANR-15-CE11-0008,CHIPSeT,Caracterisation Structurale des Couplages entre Chromatine et Homeostasie Protéique par Combinaison d'Analyses de Coevolution et de Perturbation des Interfaces de Complexes a Haut-Debit(2015)
ANR-18-CE45-0005,ESPRINet,Intégration de données hétérogènes évolutives, structurales et omiques pour la prédiction des réseaux d'interaction protéine-ARN(2018)
Source :
Bioinformatics, Bioinformatics, 2021, ⟨10.1093/bioinformatics/btab254⟩, Bioinformatics, Oxford University Press (OUP), 2021, ⟨10.1093/bioinformatics/btab254⟩
Publication Year :
2021
Publisher :
Oxford University Press (OUP), 2021.

Abstract

Motivation The crucial role of protein interactions and the difficulty in characterizing them experimentally strongly motivates the development of computational approaches for structural prediction. Even when protein–protein docking samples correct models, current scoring functions struggle to discriminate them from incorrect decoys. The previous incorporation of conservation and coevolution information has shown promise for improving protein–protein scoring. Here, we present a novel strategy to integrate atomic-level evolutionary information into different types of scoring functions to improve their docking discrimination. Results We applied this general strategy to our residue-level statistical potential from InterEvScore and to two atomic-level scores, SOAP-PP and Rosetta interface score (ISC). Including evolutionary information from as few as 10 homologous sequences improves the top 10 success rates of individual atomic-level scores SOAP-PP and Rosetta ISC by 6 and 13.5 percentage points, respectively, on a large benchmark of 752 docking cases. The best individual homology-enriched score reaches a top 10 success rate of 34.4%. A consensus approach based on the complementarity between different homology-enriched scores further increases the top 10 success rate to 40%. Availability and implementation All data used for benchmarking and scoring results, as well as a Singularity container of the pipeline, are available at http://biodev.cea.fr/interevol/interevdata/. Supplementary information Supplementary data are available at Bioinformatics online.

Details

ISSN :
13674811 and 13674803
Volume :
37
Database :
OpenAIRE
Journal :
Bioinformatics
Accession number :
edsair.doi.dedup.....4baafd7df0cd1215522773624c0f35c9
Full Text :
https://doi.org/10.1093/bioinformatics/btab254