Back to Search Start Over

Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks

Authors :
Raffaele Gaetano
Pierre Maurel
Claire Dupaquier
Dino Ienco
ADVanced Analytics for data SciencE (ADVANSE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
IEEE Geoscience and Remote Sensing Letters, IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2017, 14 (10), pp.1685-1689. ⟨10.1109/LGRS.2017.2728698⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Nowadays, modern earth observation programs produce huge volumes of satellite images time series (SITS) that can be useful to monitor geographical areas through time. How to efficiently analyze such kind of information is still an open question in the remote sensing field. Recently, deep learning methods proved suitable to deal with remote sensing data mainly for scene classification (i.e. Convolutional Neural Networks - CNNs - on single images) while only very few studies exist involving temporal deep learning approaches (i.e Recurrent Neural Networks - RNNs) to deal with remote sensing time series. In this letter we evaluate the ability of Recurrent Neural Networks, in particular the Long-Short Term Memory (LSTM) model, to perform land cover classification considering multi-temporal spatial data derived from a time series of satellite images. We carried out experiments on two different datasets considering both pixel-based and object-based classification. The obtained results show that Recurrent Neural Networks are competitive compared to state-of-the-art classifiers, and may outperform classical approaches in presence of low represented and/or highly mixed classes. We also show that using the alternative feature representation generated by LSTM can improve the performances of standard classifiers.

Details

Language :
English
ISSN :
1545598X and 15580571
Database :
OpenAIRE
Journal :
IEEE Geoscience and Remote Sensing Letters, IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2017, 14 (10), pp.1685-1689. ⟨10.1109/LGRS.2017.2728698⟩
Accession number :
edsair.doi.dedup.....4bac8a5a581629d62f413614dee55801
Full Text :
https://doi.org/10.1109/LGRS.2017.2728698⟩