Back to Search Start Over

Stereo-Electro-Encephalo-Graphy (SEEG) With Robotic Assistance in the Presurgical Evaluation of Medical Refractory Epilepsy: A Technical Note

Authors :
Saksith Smithason
Jorge Gonzalez-Martinez
Jeffrey P. Mullin
Source :
Journal of visualized experiments : JoVE. (112)
Publication Year :
2016

Abstract

SEEG is a method and technique which is used for accurate, invasive recording of seizure activity via three dimensional recordings. In epilepsy patients who are deemed appropriate candidates for invasive recordings, the decision to monitor is made between the subdural grids versus SEEG. Invasive neuromonitoring for epilepsy is pursued in patients with complex, medically refractory epilepsy. The goal of invasive monitoring is to offer resective surgery with the hope of allowing seizure freedom. SEEG's advantages include access to deep cortical structures, an ability to localize the epileptogenic zone (EZ) when subdural grids have failed to do so, and in patients with non-lesional extra-temporal epilepsies. In this manuscript, we present a succinct historical overview of the SEEG and report on our experience with frameless stereotaxy under robotic. An imperative step of SEEG insertion is planning the electrode trajectories. In order to most effectively record ictal activity via SEEG trajectories should be planned based upon a hypothesis of where the seizure activity originates the presumed epileptogenic zone (EZ). The EZ hypothesis is based on a standardized preoperative workup including video-EEG monitoring, MRI (magnetic resonance imaging), PET (positron emission tomography), ictal SPECT (Single-photon emission computed tomography), and neuropsychological assessment. Using a suspected EZ, SEEG electrodes can be placed minimally invasively yet maintain accuracy and precision. Clinical results showed the ability to localize the EZ in 78% of difficult to localize epileptic patients.(1).

Details

ISSN :
1940087X
Issue :
112
Database :
OpenAIRE
Journal :
Journal of visualized experiments : JoVE
Accession number :
edsair.doi.dedup.....4bbdac417eaf372e7537c367ccc087bc