Back to Search Start Over

Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells

Authors :
Silvia Fernández de Mattos
Miquel Costas
Anna Massaguer
Priam Villalonga
Olaf Cussó
Clara Aceves-Luquero
Marta González-Bártulos
Ma Angeles Martínez
Jamal Qualai
Javier A. Menendez
Xavi Ribas
Ministerio de Ciencia e Innovación (Espanya)
Source :
PLoS One, 2015, vol. 10, núm. 9, p. e0137800, Articles publicats (D-B), DUGiDocs – Universitat de Girona, instname, PLoS ONE, PLoS ONE, Vol 10, Iss 9, p e0137800 (2015), Recercat. Dipósit de la Recerca de Catalunya
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

Differential redox homeostasis in normal and malignant cells suggests that pro-oxidant-induced upregulation of cellular reactive oxygen species (ROS) should selectively target cancer cells without compromising the viability of untransformed cells. Consequently, a pro-oxidant deviation well-tolerated by nonmalignant cells might rapidly reach a cell-death threshold in malignant cells already at a high setpoint of constitutive oxidative stress. To test this hypothesis, we took advantage of a selected number of amine-pyridine-based Fe (II) complexes that operate as efficient and robust oxidation catalysts of organic substrates upon reaction with peroxides. Five of these Fe(II)-complexes and the corresponding aminopyridine ligands were selected to evaluate their anticancer properties. We found that the iron complexes failed to display any relevant activity, while the corresponding ligands exhibited significant antiproliferative activity. Among the ligands, none of which were hemolytic, compounds 1, 2 and 5 were cytotoxic in the low micromolar range against a panel of molecularly diverse human cancer cell lines. Importantly, the cytotoxic activity profile of some compounds remained unaltered in epithelial-to-mesenchymal (EMT)-induced stable populations of cancer stem-like cells, which acquired resistance to the well-known ROS inducer doxorubicin. Compounds 1, 2 and 5 inhibited the clonogenicity of cancer cells and induced apoptotic cell death accompanied by caspase 3/7 activation. Flow cytometry analyses indicated that ligands were strong inducers of oxidative stress, leading to a 7-fold increase in intracellular ROS levels. ROS induction was associated with their ability to bind intracellular iron and generate active coordination complexes inside of cells. In contrast, extracellular complexation of iron inhibited the activity of the ligands. Iron complexes showed a high proficiency to cleave DNA through oxidative-dependent mechanisms, suggesting a likely mechanism of cytotoxicity. In summary, we report that, upon chelation of intracellular iron, the pro-oxidant activity of amine-pyrimidine-based iron complexes efficiently kills cancer and cancer stem-like cells, thus providing functional evidence for an efficient family of redox-directed anti-cancer metallodrugs.<br />This work was supported by grants from the Spanish Ministerio de Economia y Competitividad (MINECO), CONSOLIDER-INGENIO 2010 CSD2010-00065, and from the Ministerio de Ciencia e Innovacion (MICINN), SAF2012-38914, Plan Nacional de I+D+I.

Details

Database :
OpenAIRE
Journal :
PLoS One, 2015, vol. 10, núm. 9, p. e0137800, Articles publicats (D-B), DUGiDocs – Universitat de Girona, instname, PLoS ONE, PLoS ONE, Vol 10, Iss 9, p e0137800 (2015), Recercat. Dipósit de la Recerca de Catalunya
Accession number :
edsair.doi.dedup.....4bf57f09755b202a24f832781ce7c76c