Back to Search Start Over

Dramatic response of metastatic cutaneous angiosarcoma to an immune checkpoint inhibitor in a patient with xeroderma pigmentosum: whole-genome sequencing aids treatment decision in end-stage disease

Authors :
Catherine M. Stefanato
Helen Davies
Sophie Momen
Andrea Degasperi
Dhruba Dasgupta
João M. L. Dias
Robert Sarkany
Hiva Fassihi
Serena Nik-Zainal
Emma Craythorne
Sophie Papa
Christos Nikolaou
Source :
Cold Spring Harbor Molecular Case Studies
Publication Year :
2019
Publisher :
Cold Spring Harbor Laboratory, 2019.

Abstract

“Mutational signatures” are patterns of mutations that report DNA damage and subsequent repair processes that have occurred. Whole-genome sequencing (WGS) can provide additional information to standard diagnostic techniques and can identify therapeutic targets. A 32-yr-old male with xeroderma pigmentosum developed metastatic angiosarcoma that was unresponsive to three lines of conventional sarcoma therapies. WGS was performed on his primary cancer revealing a hypermutated tumor, including clonal ultraviolet radiation-induced mutational patterns (Signature 7) and subclonal signatures of mutated DNA polymerase epsilon (POLE) (Signature 10). These signatures are associated with response to immune checkpoint blockade. Immunohistochemistry confirmed high PD-L1 expression in metastatic deposits. The anti-PD-1 monoclonal antibody pembrolizumab was commenced off-label given the POLE mutation and high mutational load. After four cycles, there was a significant reduction in his disease with almost complete resolution of the metastatic deposits. This case highlights the importance of WGS in the analysis, interpretation, and treatment of cancers. We anticipate that as WGS becomes integral to the cancer diagnostic pathway, treatments will be stratified to the individual based on their unique genomic and/or transcriptomic profile, enhancing classical approaches of histologically driven treatment decisions.

Details

ISSN :
23732873 and 23732865
Volume :
5
Database :
OpenAIRE
Journal :
Molecular Case Studies
Accession number :
edsair.doi.dedup.....4c5af4deb8b79ab431e586ebc5b62eac