Back to Search Start Over

From LiNiO₂ to Li₂NiO₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides

Authors :
Bianchini, Matteo
Schiele, Alexander
Schweidler, Simon
Sicolo, Sabrina
Fauth, François
Suard, Emmanuelle
Indris, Sylvio
Mazilkin, Andrey
Nagel, Peter
Schuppler, Stefan
Merz, Michael
Hartmann, Pascal
Brezesinski, Torsten
Janek, Jürgen
Source :
Chemistry of materials, 32 (21), 9211–9227
Publication Year :
2020
Publisher :
American Chemical Society, 2020.

Abstract

The Li−Ni−O phase diagram contains a variety of compounds, most of which are electrochemically active in Li-ion batteries. Other than the well-known LiNiO2, here we report a facile solid-state method to prepare Li2NiO3 and other Li-rich Ni oxides of composition Li1+xNi1−xO2 (0 ≤ x ≤ 0.33). We characterize their crystal and electronic structure, exhibiting a highly oxidized Ni state and defects of various nature (Li−Ni disorder, stacking faults, oxygen vacancies). We then investigate the use of Li2NiO3 as a cathode active material and show its remarkably high specific capacity, which however fades quickly. While we demonstrate that the initial capacity is due to irreversible O2 release, such process stops quickly in favor of more classical reversible redox mechanisms that allow cycling the material for >100 cycles. After the severe oxygen loss (∼15−20%) and prolonged cycling, the Bragg reflections of Li2NiO3 disappear. Analysis of the diffracted intensities suggests the resulting phase is a disordered rock salt-type material with high Li content, close to Li0.5Ni0.5O, never reported to date and capable of Li diffusion. Our findings demonstrate that the Li−Ni−O phase diagram has not been fully investigated yet, especially concerning the preparation of new promising materials by out-of-equilibrium methods.

Details

Language :
English
ISSN :
08974756 and 15205002
Database :
OpenAIRE
Journal :
Chemistry of materials, 32 (21), 9211–9227
Accession number :
edsair.doi.dedup.....4ca69ae551c914761623bccd115a7799