Back to Search
Start Over
From LiNiO₂ to Li₂NiO₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides
- Source :
- Chemistry of materials, 32 (21), 9211–9227
- Publication Year :
- 2020
- Publisher :
- American Chemical Society, 2020.
-
Abstract
- The Li−Ni−O phase diagram contains a variety of compounds, most of which are electrochemically active in Li-ion batteries. Other than the well-known LiNiO2, here we report a facile solid-state method to prepare Li2NiO3 and other Li-rich Ni oxides of composition Li1+xNi1−xO2 (0 ≤ x ≤ 0.33). We characterize their crystal and electronic structure, exhibiting a highly oxidized Ni state and defects of various nature (Li−Ni disorder, stacking faults, oxygen vacancies). We then investigate the use of Li2NiO3 as a cathode active material and show its remarkably high specific capacity, which however fades quickly. While we demonstrate that the initial capacity is due to irreversible O2 release, such process stops quickly in favor of more classical reversible redox mechanisms that allow cycling the material for >100 cycles. After the severe oxygen loss (∼15−20%) and prolonged cycling, the Bragg reflections of Li2NiO3 disappear. Analysis of the diffracted intensities suggests the resulting phase is a disordered rock salt-type material with high Li content, close to Li0.5Ni0.5O, never reported to date and capable of Li diffusion. Our findings demonstrate that the Li−Ni−O phase diagram has not been fully investigated yet, especially concerning the preparation of new promising materials by out-of-equilibrium methods.
- Subjects :
- 2017-019-020610
Technology
FIB
KNMF 2018-021-024449 WERA
TEM
ddc:600
Subjects
Details
- Language :
- English
- ISSN :
- 08974756 and 15205002
- Database :
- OpenAIRE
- Journal :
- Chemistry of materials, 32 (21), 9211–9227
- Accession number :
- edsair.doi.dedup.....4ca69ae551c914761623bccd115a7799