Back to Search Start Over

Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli

Authors :
Scott A. Beatson
Nguyen Thi Khanh Nhu
Nicholas P. West
Mark A. Schembri
David L. Paterson
Wai-Fong Yin
Teik Min Chong
Maud E. S. Achard
Minh-Duy Phan
Brian M. Forde
Kok-Gan Chan
Mark J. Walker
Kar-Wai Hong
Source :
Journal of Antimicrobial Chemotherapy. 72:2729-2736
Publication Year :
2017
Publisher :
Oxford University Press (OUP), 2017.

Abstract

Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

Details

ISSN :
14602091 and 03057453
Volume :
72
Database :
OpenAIRE
Journal :
Journal of Antimicrobial Chemotherapy
Accession number :
edsair.doi.dedup.....4cc636fa18d44c30e8d44fb51ac38bcd