Back to Search Start Over

Effect of Spin–Orbit Coupling on Phonon-Mediated Magnetic Relaxation in a Series of Zero-Valent Vanadium, Niobium, and Tantalum Isocyanide Complexes

Authors :
Victor G. Young
John E. Ellis
Mihail Atanasov
Wayne W. Lukens
Frank Neese
Ruchira Chatterjee
Khetpakorn Chakarawet
Jeffrey R. Long
Source :
Inorganic Chemistry. 60:18553-18560
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin-phonon computations support the role of spin-orbit coupling in modulating spin-phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin-orbit coupling interactions leads to increased spin-vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules.

Details

ISSN :
1520510X and 00201669
Volume :
60
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....4d6529273d43e2d771b9176e336c8f0a