Back to Search Start Over

Sampling-free Uncertainty Estimation in Gated Recurrent Units with Exponential Families

Authors :
Hwang, Seong Jae
Mehta, Ronak
Kim, Hyunwoo J.
Singh, Vikas
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

There has recently been a concerted effort to derive mechanisms in vision and machine learning systems to offer uncertainty estimates of the predictions they make. Clearly, there are enormous benefits to a system that is not only accurate but also has a sense for when it is not sure. Existing proposals center around Bayesian interpretations of modern deep architectures -- these are effective but can often be computationally demanding. We show how classical ideas in the literature on exponential families on probabilistic networks provide an excellent starting point to derive uncertainty estimates in Gated Recurrent Units (GRU). Our proposal directly quantifies uncertainty deterministically, without the need for costly sampling-based estimation. We demonstrate how our model can be used to quantitatively and qualitatively measure uncertainty in unsupervised image sequence prediction. To our knowledge, this is the first result describing sampling-free uncertainty estimation for powerful sequential models such as GRUs.<br />Comment: Version 2

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4df036754fe401054203822a45b96d2f
Full Text :
https://doi.org/10.48550/arxiv.1804.07351