Back to Search Start Over

Real-Time Learning of Power Consumption in Dynamic and Noisy Ambient Environments

Authors :
Marie-Pierre Gleizes
Jean-Pierre Georgé
Fabrice Crasnier
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Systèmes Multi-Agents Coopératifs (IRIT-SMAC)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Source :
HAL, ICCCI 2019: Computational Collective Intelligence, International Conference on Computational Collective Intelligence Technologies and Applications (ICCCI 2019), International Conference on Computational Collective Intelligence Technologies and Applications (ICCCI 2019), Sep 2019, Hendaye, France. pp.443-454, Computational Collective Intelligence ISBN: 9783030283735, ICCCI (2)

Abstract

International audience; The usual approach to ambient intelligence is an expert modeling of the devices present in the environment, describing what each does and what effect it will have. When seen as a dynamic and noisy complex systems, with the efficiency of devices changing and new devices appearing, this seems unrealistic. We propose a generic multi-agent (MAS) learning approach that can be deployed in any ambient environment and collectively self-models it. We illustrate the concept on the estimation of power consumption. The agents representing the devices adjust their estimations iteratively and in real time so as to result in a continuous collective problem solving. This approach will be extended to estimate the impact of each device on each comfort (noise, light, smell, heat...), making it possible for them to adjust their behaviour to satisfy the users in an integrative and systemic vision of an intelligent house we call QuaLAS: eco-friendly Quality of Life in Ambient Sociotechnical systems.

Details

ISBN :
978-3-030-28373-5
ISBNs :
9783030283735
Database :
OpenAIRE
Journal :
HAL, ICCCI 2019: Computational Collective Intelligence, International Conference on Computational Collective Intelligence Technologies and Applications (ICCCI 2019), International Conference on Computational Collective Intelligence Technologies and Applications (ICCCI 2019), Sep 2019, Hendaye, France. pp.443-454, Computational Collective Intelligence ISBN: 9783030283735, ICCCI (2)
Accession number :
edsair.doi.dedup.....4e1d7664620b01399cfd155e1da004c3