Back to Search Start Over

Faustmann Rotation and population dynamics in the presence of a risk of destructive events

Authors :
Patrice Loisel
Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA)
Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
ProdInra, Migration
Analyse des Systèmes et Biométrie (ASB)
Institut National de la Recherche Agronomique (INRA)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)
Source :
Journal of Forest Economics, Journal of Forest Economics, Elsevier, 2011, 17 (3), pp.235-247. ⟨10.1016/j.jfe.2011.02.001⟩, 3. International Faustmann Symposium, 3. International Faustmann Symposium, Oct 2009, Darmstadt, Germany
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; The impact of the presence of risk of destructive event on the silvicultural practice of a forest stand is investigated. For that, we consider a model of population dynamics. This model has allowed us to make the comparison without and with risk, and highlight the influence of the presence of risk of destructive event on optimal thinning and optimal rotation period.

Subjects

Subjects :
Rotation period
010504 meteorology & atmospheric sciences
Event (relativity)
Geography, Planning and Development
Economics, Econometrics and Finance (miscellaneous)
Population
Optimal cutting age
[QFIN.RM]Quantitative Finance [q-fin]/Risk Management [q-fin.RM]
Rotation
01 natural sciences
Faustmann rotation
JEL: C - Mathematical and Quantitative Methods/C.C6 - Mathematical Methods • Programming Models • Mathematical and Simulation Modeling/C.C6.C61 - Optimization Techniques • Programming Models • Dynamic Analysis
FOS: Mathematics
[QFIN.RM] Quantitative Finance [q-fin]/Risk Management [q-fin.RM]
Quantitative Biology - Populations and Evolution
education
Mathematics - Optimization and Control
0105 earth and related environmental sciences
040101 forestry
education.field_of_study
Natural risk
Ecology
Thinning
Populations and Evolution (q-bio.PE)
Forestry
JEL: D - Microeconomics/D.D8 - Information, Knowledge, and Uncertainty/D.D8.D81 - Criteria for Decision-Making under Risk and Uncertainty
04 agricultural and veterinary sciences
15. Life on land
Geodesy
[SDE.ES]Environmental Sciences/Environmental and Society
JEL: Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q2 - Renewable Resources and Conservation/Q.Q2.Q23 - Forestry
Optimization and Control (math.OC)
FOS: Biological sciences
0401 agriculture, forestry, and fisheries
Faustmann rotation,Optimal cutting age,Model,Thinning,Natural risk
[SDE.ES] Environmental Sciences/Environmental and Society
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Geology
Model

Details

Language :
English
ISSN :
11046899
Database :
OpenAIRE
Journal :
Journal of Forest Economics, Journal of Forest Economics, Elsevier, 2011, 17 (3), pp.235-247. ⟨10.1016/j.jfe.2011.02.001⟩, 3. International Faustmann Symposium, 3. International Faustmann Symposium, Oct 2009, Darmstadt, Germany
Accession number :
edsair.doi.dedup.....4e36237af82addcd6d42126c9f528849
Full Text :
https://doi.org/10.1016/j.jfe.2011.02.001⟩