Back to Search Start Over

Whole-body tracking of single cells via positron emission tomography

Authors :
Guillem Pratx
Siyeon Rhee
Kyung Oh Jung
Jung Ho Yu
Wei Zhao
Tae Jin Kim
Kristy Red-Horse
Sanjiv S. Gambhir
Byung Hang Ha
Source :
Nature biomedical engineering. 4(8)
Publication Year :
2019

Abstract

In vivo molecular imaging can measure the average kinetics and movement routes of injected cells through the body. However, owing to non-specific accumulation of the contrast agent and its efflux from the cells, most of these imaging methods inaccurately estimate the distribution of the cells. Here, we show that single human breast cancer cells loaded with mesoporous silica nanoparticles concentrating the 68Ga radioisotope and injected into immunodeficient mice can be tracked in real time from the pattern of annihilation photons detected using positron emission tomography, with respect to anatomical landmarks derived from X-ray computed tomography. The cells travelled at an average velocity of 50 mm sāˆ’1 and arrested in the lungs 2ā€“3 s after tail-vein injection into the mice, which is consistent with the blood-flow rate. Single-cell tracking could be used to determine the kinetics of cell trafficking and arrest during the earliest phase of the metastatic cascade, the trafficking of immune cells during cancer immunotherapy and the distribution of cells after transplantation. The travelling kinetics of single cells loaded with mesoporous silica nanoparticles concentrating the 68Ga radioisotope can be tracked in real time in vivo from the patterns of coincident gamma rays detected by positron emission tomography.

Details

ISSN :
2157846X
Volume :
4
Issue :
8
Database :
OpenAIRE
Journal :
Nature biomedical engineering
Accession number :
edsair.doi.dedup.....4e380ca0cc991f6e170080ab71f9541b