Back to Search
Start Over
The effectiveness of EMG-driven neuromusculoskeletal model calibration is task dependent
- Source :
- Journal of Biomechanics. 129:110698
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Calibration of neuromusculoskeletal models using functional tasks is performed to calculate subject-specific musculotendon parameters, as well as coefficients describing the shape of muscle excitation and activation functions. The objective of the present study was to employ a neuromusculoskeletal model of the shoulder driven entirely from muscle electromyography (EMG) to quantify the influence of different model calibration strategies on muscle and joint force predictions. Three healthy adults performed dynamic shoulder abduction and flexion, followed by calibration tasks that included reaching, head touching as well as active and passive abduction, flexion and axial rotation, and submaximal isometric abduction, flexion and axial rotation contractions. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using subject-specific EMG-driven neuromusculoskeletal models that were uncalibrated and calibrated using (i) all calibration tasks (ii) sagittal plane calibration tasks, and (iii) scapular plane calibration tasks. Joint forces were compared to published instrumented implant data. Calibrating models across all tasks resulted in glenohumeral joint force magnitudes that were more similar to instrumented implant data than those derived from any other model calibration strategy. Muscles that generated greater torque were more sensitive to calibration than those that contributed less. This study demonstrates that extensive model calibration over a broad range of contrasting tasks produces the most accurate and physiologically relevant musculotendon and EMG-to-activation parameters. This study will assist in development and deployment of subject-specific neuromusculoskeletal models.
- Subjects :
- Adult
musculoskeletal diseases
Motion analysis
Computer science
0206 medical engineering
Deltoid curve
Biomedical Engineering
Biophysics
02 engineering and technology
Isometric exercise
Electromyography
Models, Biological
03 medical and health sciences
0302 clinical medicine
medicine
Calibration
Humans
Torque
Orthopedics and Sports Medicine
Rotator cuff
Range of Motion, Articular
Muscle, Skeletal
Simulation
030203 arthritis & rheumatology
medicine.diagnostic_test
Shoulder Joint
Rehabilitation
020601 biomedical engineering
Sagittal plane
Biomechanical Phenomena
body regions
medicine.anatomical_structure
Subjects
Details
- ISSN :
- 00219290
- Volume :
- 129
- Database :
- OpenAIRE
- Journal :
- Journal of Biomechanics
- Accession number :
- edsair.doi.dedup.....4eb4131347533420b6953a9d84965c9c
- Full Text :
- https://doi.org/10.1016/j.jbiomech.2021.110698