Back to Search Start Over

Quantization of probability distributions under norm-based distortion measures

Authors :
Sylvain Delattre
Siegfried Graf
Harald Luschgy
Gilles Pagès
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Fakultät für Mathematik und Informatik [Passau]
Universität Passau [Passau]
Mathematik
Universität Trier
Trier University
Source :
Statistics & Decisions. 22
Publication Year :
2004
Publisher :
Walter de Gruyter GmbH, 2004.

Abstract

For a probability measure $P$ on $\R^d$ and $n\!\! \in \! \N$ consider $e_n = \inf \displaystyle \int \min_{a \in \alpha} V(\| x-a \| )dP(x)$ where the infimum is taken over all subsets $\alpha$ of $\R^d$ with $\mbox{card} (\alpha) \leq n$ and $V$ is a nondecreasing function. Under certain conditions on $V$, we derive the precise $n$-asymptotics of $e_n$ for nonsingular and for (singular) self-similar distributions $P$ and we find the asymptotic performance of optimal quantizers using weighted empirical measures.

Details

ISSN :
07212631
Volume :
22
Database :
OpenAIRE
Journal :
Statistics & Decisions
Accession number :
edsair.doi.dedup.....4eead0c5924f50eb1f9df714533b6b8a
Full Text :
https://doi.org/10.1524/stnd.22.4.261.64314