Back to Search Start Over

Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models

Authors :
Marina Vidrascu
Dominique Chapelle
Cyril Touzé
Unité de Mécanique (UME)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Numerical simulation of biological flows (REO)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Source :
Computational Mechanics, Computational Mechanics, 2014, 54, pp.567-580. ⟨10.1007/s00466-014-1006-4⟩, Computational Mechanics, Springer Verlag, 2014, 54, pp.567-580. ⟨10.1007/s00466-014-1006-4⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; We propose a direct method for computing modal coupling coefficients - due to geometrically nonlinear effects - for thin shells vibrating at large amplitude and discretized by a finite element (FE) procedure. These coupling coefficients arise when considering a discrete expansion of the unknown displacement onto the eigenmodes of the linear operator. The evolution problem is thus projected onto the eigenmodes basis and expressed as an assembly of oscillators with quadratic and cubic nonlinearities. The nonlinear coupling coefficients are directly derived from the finite element formulation, with specificities pertaining to the shell elements considered, namely, here elements of the ''Mixed Interpolation of Tensorial Components'' family (MITC). Therefore, the computation of coupling coefficients, combined with an adequate selection of the significant eigenmodes, allows the derivation of effective reduced-order models for computing - with a continuation procedure - the stable and unstable vibratory states of any vibrating shell, up to large amplitudes. The procedure is illustrated on a hyperbolic paraboloid panel. Bifurcation diagrams in free and forced vibrations are obtained. Comparisons with direct time simulations of the full FE model are given. Finally, the computed coefficients are used for a maximal reduction based on asymptotic nonlinear normal modes (NNMs), and we find that the most important part of the dynamics can be predicted with a single oscillator equation.

Details

Language :
English
ISSN :
01787675 and 14320924
Database :
OpenAIRE
Journal :
Computational Mechanics, Computational Mechanics, 2014, 54, pp.567-580. ⟨10.1007/s00466-014-1006-4⟩, Computational Mechanics, Springer Verlag, 2014, 54, pp.567-580. ⟨10.1007/s00466-014-1006-4⟩
Accession number :
edsair.doi.dedup.....4f2140006dd30b1bec077092aff0964e
Full Text :
https://doi.org/10.1007/s00466-014-1006-4⟩