Back to Search Start Over

An automated image-processing strategy to analyze dynamic arterial spin labeling perfusion studies. Application to human skeletal muscle under stress

Authors :
David Lesage
Alain Herment
Pierre G. Carlier
Frédérique Frouin
Anne Leroy-Willig
Sandrine Duteil
Laboratoire d'Imagerie Fonctionnelle (LIF)
Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR14-IFR49-Institut National de la Santé et de la Recherche Médicale (INSERM)
Institut de Myologie
Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Saidi, Vanessa
Source :
Magnetic Resonance Imaging, Magnetic Resonance Imaging, 2006, 24 (7), pp.941-51. ⟨10.1016/j.mri.2005.09.012⟩, Magnetic Resonance Imaging, Elsevier, 2006, 24 (7), pp.941-51. ⟨10.1016/j.mri.2005.09.012⟩
Publication Year :
2006
Publisher :
HAL CCSD, 2006.

Abstract

Arterial spin labeling (ASL) perfusion measurements allow the follow-up of muscle perfusion with high temporal resolution during a stress test. Automated image processing is proposed to estimate perfusion maps from ASL images. It is based on two successive analyses: at first, automated rejection of the image pairs between which a large displacement is detected is performed, followed by factor analysis of the dynamic data and cluster analysis to classify pixels with large signal variation characteristic of vessels. Then, after masking these "vascular" pixels, factor analysis and cluster analysis are further applied to separate the different muscles between low or high perfusion increase, yielding a functional map of the leg. Data from 10 subjects (five normal volunteers and five elite sportsmen) had been analyzed. Resulting time perfusion curves from a region of interest (ROI) in active muscles show a good accordance whether extracted with automated processing or with manual processing. This method of functional segmentation allows automated suppression of vessels and fast visualization of muscles with high, medium or low perfusion, without any a priori knowledge.

Details

Language :
English
ISSN :
0730725X
Database :
OpenAIRE
Journal :
Magnetic Resonance Imaging, Magnetic Resonance Imaging, 2006, 24 (7), pp.941-51. ⟨10.1016/j.mri.2005.09.012⟩, Magnetic Resonance Imaging, Elsevier, 2006, 24 (7), pp.941-51. ⟨10.1016/j.mri.2005.09.012⟩
Accession number :
edsair.doi.dedup.....4f246663d10e364cc847dea70d816590
Full Text :
https://doi.org/10.1016/j.mri.2005.09.012⟩