Back to Search Start Over

Quantitative accuracy of virtual non-contrast images derived from spectral detector computed tomography: an abdominal phantom study

Authors :
Simon Lennartz
Jasmin A Holz
David Maintz
Carola Heneweer
Hatem Alkadhi
K Laukamp
Nils Große Hokamp
Thorsten Persigehl
Michael Püsken
University of Zurich
Source :
Scientific Reports, Vol 10, Iss 1, Pp 1-8 (2020), Scientific Reports
Publication Year :
2020
Publisher :
Nature Portfolio, 2020.

Abstract

Dual-energy CT allows for the reconstruction of virtual non-contrast (VNC) images. VNC images have the potential to replace true non-contrast scans in various clinical applications. This study investigated the quantitative accuracy of VNC attenuation images considering different parameters for acquisition and reconstruction. An abdomen phantom with 7 different tissue types (different combinations of 3 base materials and 5 iodine concentrations) was scanned using a spectral detector CT (SDCT). Different phantom sizes (S, M, L), volume computed tomography dose indices (CTDIvol 10, 15, 20 mGy), kernel settings (soft, standard, sharp), and denoising levels (low, medium, high) were tested. Conventional and VNC images were reconstructed and analyzed based on regions of interest (ROI). Mean and standard deviation were recorded and differences in attenuation between corresponding base materials and VNC was calculated (VNCerror). Statistic analysis included ANOVA, Wilcoxon test and multivariate regression analysis. Overall, the VNCerror was − 1.4 ± 6.1 HU. While radiation dose, kernel setting, and denoising level did not influence VNCerror significantly, phantom size, iodine content and base material had a significant effect (e.g. S vs. M: − 1.2 ± 4.9 HU vs. − 2.1 ± 6.0 HU; 0.0 mg/ml vs. 5.0 mg/ml: − 4.0 ± 3.5 HU vs. 5.1 ± 5.0 HU and 35-HU-base vs. 54-HU-base: − 3.5 ± 4.4 HU vs. 0.7 ± 6.5; all p ≤ 0.05). The overall accuracy of VNC images from SDCT is high and independent from dose, kernel, and denoising settings; however, shows a dependency on patient size, base material, and iodine content; particularly the latter results in small, yet, noticeable differences in VNC attenuation.

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....4f27b8b5da0aa647c9f37f814a52e921