Back to Search
Start Over
Lefschetz properties of monomial algebras with almost linear resolution
- Source :
- Communications in Algebra, Communications in Algebra, Taylor & Francis, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩, Communications in Algebra, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- International audience; We study the WLP and SLP of artinian monomial ideals in S = K[x 1 ,. .. , x n ] via studying their minimal free resolutions. We study the Lefschetz properties of such ideals where the minimal free resolution of S/I is linear for at least n − 2 steps. We give an affirmative answer to a conjecture of Eisenbud, Huneke and Ulrich for artinian monomial ideals with almost linear resolutions.
- Subjects :
- monomial ideals
Pure mathematics
Monomial
Algebra and Number Theory
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
010102 general mathematics
010103 numerical & computational mathematics
Weak Lefschetz property
almost linear resolution 2010 MATHEMATICS SUBJECT CLASSIFICATION
01 natural sciences
13D02 Weak Lefschetz property
2010 Mathematics Subject Classification. 13E10
almost linear resolution
0101 mathematics
[MATH]Mathematics [math]
Linear resolution
Mathematics
Resolution (algebra)
Subjects
Details
- Language :
- English
- ISSN :
- 00927872 and 15324125
- Database :
- OpenAIRE
- Journal :
- Communications in Algebra, Communications in Algebra, Taylor & Francis, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩, Communications in Algebra, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩
- Accession number :
- edsair.doi.dedup.....4f49006d8cd6b54a85ffa656b2c2bc6e
- Full Text :
- https://doi.org/10.1080/00927872.2019.1691568⟩