Back to Search Start Over

Freeness and invariants of rational plane curves

Authors :
Gabriel Sticlaru
Laurent Busé
Alexandru Dimca
AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Faculty of Mathematics and Informatics [Constanta]
Ovidius University of Constanta
ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens = University of Athens (NKUA | UoA)
Université Nice Sophia Antipolis (... - 2019) (UNS)
Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Source :
Mathematics of Computation, Mathematics of Computation, American Mathematical Society, 2020, 89, pp.1525--1546. ⟨10.1090/mcom/3495⟩, Mathematics of Computation, American Mathematical Society, In press, 89, pp.1525--1546. ⟨10.1090/mcom/3495⟩, Mathematics of Computation, 2020, 89, pp.1525--1546. ⟨10.1090/mcom/3495⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Given a parameterization $\phi$ of a rational plane curve C, we study some invariants of C via $\phi$. We first focus on the characterization of rational cuspidal curves, in particular we establish a relation between the discriminant of the pull-back of a line via $\phi$, the dual curve of C and its singular points. Then, by analyzing the pull-backs of the global differential forms via $\phi$, we prove that the (nearly) freeness of a rational curve can be tested by inspecting the Hilbert function of the kernel of a canonical map. As a by product, we also show that the global Tjurina number of a rational curve can be computed directly from one of its parameterization, without relying on the computation of an equation of C.<br />Comment: Mathematics of Computation, American Mathematical Society, In press

Details

Language :
English
ISSN :
00255718
Database :
OpenAIRE
Journal :
Mathematics of Computation, Mathematics of Computation, American Mathematical Society, 2020, 89, pp.1525--1546. ⟨10.1090/mcom/3495⟩, Mathematics of Computation, American Mathematical Society, In press, 89, pp.1525--1546. ⟨10.1090/mcom/3495⟩, Mathematics of Computation, 2020, 89, pp.1525--1546. ⟨10.1090/mcom/3495⟩
Accession number :
edsair.doi.dedup.....4f7c69fc64cd0bd02494cb5306526327
Full Text :
https://doi.org/10.1090/mcom/3495⟩