Back to Search
Start Over
Electron paramagnetic resonance (EPR) studies on the photo-thermo ionization process of photo-thermo-refractive glasses
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Journal of Non-Crystalline Solids, Journal of Non-Crystalline Solids, 2016, 452, pp.320-324. ⟨10.1016/j.jnoncrysol.2016.09.012⟩, Journal of Non-Crystalline Solids, Elsevier, 2016, 452, pp.320-324. ⟨10.1016/j.jnoncrysol.2016.09.012⟩
- Publication Year :
- 2016
-
Abstract
- Photo-thermo-refractive (PTR) glass is an optically transparent photosensitive sodium alumino silicate glass, containing NaF and KBr additives, along with cerium, silver, tin and antimony oxide dopants. UV-exposed regions of this glass produce NaF nanocrystals upon heating, giving rise to a permanent localized refractive index change. In this article we examine the initial stages of this crystallization process by continuous-wave and pulsed X-band electron paramagnetic resonance (EPR) spectroscopy. UV exposure of PTR glass produces unpaired electrons whose EPR spectrum is characterized by pronounced peak splitting arising from nuclear magnetic hyperfine interactions with spin-5/2 and spin-7/2 nuclei suggesting close proximity of the unpaired electrons with 121 Sb and 123 Sb nuclei. These results indicate that the Sb 2 O 3 dopant plays a key role in the initial stages of the crystallization mechanism. Upon thermal annealing, leading to the crystallization of NaF, these species disappear, indicating their transient nature. A number of other unpaired electron species identified in the dopant free matrix appear to be unrelated to the crystallization process. These results clearly challenge the classical mechanism proposed decades ago to explain the complex crystallization process of PTR glass. Together with more recent results from optical spectroscopy they support the Nikonorov model involving (1) photoionization of Ce 3 + , (2) transfer of this electron to Sb 5 + species to create a Sb 4 + species, (3) upon annealing electron transfer from Sb 4 + to Ag + ions, producing silver atoms, (4) coalescence of these species into Ag clusters, which (5) serve as nucleation catalysts for NaF nanocrystals.
- Subjects :
- Materials science
Analytical chemistry
chemistry.chemical_element
02 engineering and technology
01 natural sciences
law.invention
Ion
Electron transfer
law
0103 physical sciences
Materials Chemistry
Crystallization
Electron paramagnetic resonance
Hyperfine structure
ComputingMilieux_MISCELLANEOUS
010302 applied physics
Dopant
021001 nanoscience & nanotechnology
Condensed Matter Physics
Electronic, Optical and Magnetic Materials
Cerium
Unpaired electron
chemistry
Ceramics and Composites
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Physical chemistry
0210 nano-technology
RESSONÂNCIA PARAMAGNÉTICA ELETRÔNICA
Subjects
Details
- ISSN :
- 00223093
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Journal of Non-Crystalline Solids, Journal of Non-Crystalline Solids, 2016, 452, pp.320-324. ⟨10.1016/j.jnoncrysol.2016.09.012⟩, Journal of Non-Crystalline Solids, Elsevier, 2016, 452, pp.320-324. ⟨10.1016/j.jnoncrysol.2016.09.012⟩
- Accession number :
- edsair.doi.dedup.....5059141efb5a9f3e88359f11c5631b29
- Full Text :
- https://doi.org/10.1016/j.jnoncrysol.2016.09.012⟩