Back to Search
Start Over
Paper-Based Constant Potential Electrochemiluminescence Sensing Platform with Black Phosphorus as a Luminophore Enabled by a Perovskite Solar Cell
- Source :
- Analytical chemistry. 92(10)
- Publication Year :
- 2020
-
Abstract
- Exploring efficient luminophores in the electrochemiluminescence (ECL) system is highly desired to pursue a sensitive ECL sensing platform. Herein, the black phosphorus nanosheets (BP NSs) with excellent ECL properties are investigated and serve as the luminophore with the coreactant of peroxydisulfate (S2O82-) solution. Moreover, owing to the overlapping of emission and absorbance spectra, effective resonance energy transfer (RET) is realized between the BP NSs and the introduced Au nanoparticles. In order to achieve the portable and miniaturized developing trends for the paper-based ECL sensing platform, a paper-based perovskite solar cell (PSC) device is designed to act as the power source to replace the commonly utilized expensive and cumbersome electrochemical workstation. Benefiting from that, a PSC driven paper-based constant potential ECL-RET sensing platform is constructed, thereby realizing sensitive microRNAs (miRNAs) detection. What's more, to attain the preferable analytical performance, the duplex-specific nuclease (DSN) is also introduced to assist the target recycling signal amplification strategy. Based on this, highly sensitive detection of miRNA-107 with a range from 0.1 pM to 15 nM is achieved by this designed sensing platform. Most importantly, this work not only pioneers a precedent for developing a high-sensitivity PSC triggered ECL sensing platform but also explores the application prospect of BP nanomaterial in the field of bioanalysis.
- Subjects :
- Paper
Titanium
Bioanalysis
Chemistry
010401 analytical chemistry
Perovskite solar cell
Nanoparticle
Nanotechnology
Oxides
Phosphorus
Paper based
Biosensing Techniques
Electrochemical Techniques
Calcium Compounds
010402 general chemistry
01 natural sciences
Black phosphorus
0104 chemical sciences
Analytical Chemistry
Nanomaterials
chemistry.chemical_compound
Luminescent Measurements
Luminophore
Solar Energy
Electrochemiluminescence
Subjects
Details
- ISSN :
- 15206882
- Volume :
- 92
- Issue :
- 10
- Database :
- OpenAIRE
- Journal :
- Analytical chemistry
- Accession number :
- edsair.doi.dedup.....5059800387308d1d7f7cdeac404fc0e8