Back to Search
Start Over
Homotopy type of moduli spaces of G-Higgs bundles and reducibility of the nilpotent cone
- Source :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Publication Year :
- 2019
-
Abstract
- Let $G$ be a real reductive Lie group, and $H^{\mathbb{C}}$ the complexification of its maximal compact subgroup $H\subset G$. We consider classes of semistable $G$-Higgs bundles over a Riemann surface $X$ of genus $g\geq2$ whose underlying $H^{\mathbb{C}}$-principal bundle is unstable. This allows us to find obstructions to a deformation retract from the moduli space of $G$-Higgs bundles over $X$ to the moduli space of $H^{\mathbb{C}}$-bundles over $X$, in contrast with the situation when $g=1$, and to show reducibility of the nilpotent cone of the moduli space of $G$-Higgs bundles, for $G$ complex.<br />14 pages
- Subjects :
- Nilpotent cone
Pure mathematics
14H60, 32L05
General Mathematics
Riemann surface
Homotopy
Complexification (Lie group)
010102 general mathematics
Lie group
16. Peace & justice
01 natural sciences
Principal bundle
Moduli space
symbols.namesake
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
FOS: Mathematics
symbols
0101 mathematics
Algebraic Geometry (math.AG)
Mathematics::Symplectic Geometry
Maximal compact subgroup
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Accession number :
- edsair.doi.dedup.....506308256addd94124006ce7d4e35e7c