Back to Search Start Over

Robust Visual-Aided Autonomous Takeoff, Tracking, and Landing of a Small UAV on a Moving Landing Platform for Life-Long Operation

Authors :
Antonio Barrientos
João Valente
Pablo Palafox
Mario Garzón
Juan Jesús Roldán
Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)
Robots coopératifs et adaptés à la présence humaine en environnements dynamiques (CHROMA)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Universidad Politécnica de Madrid (UPM)
Comunidad de Madrid
Ministerio de Economía y Competitividad (España)
Palafox, Pablo R.
Garzón, Mario
Valente, João Ricardo
Roldán-Gómez, Juan Jesús
Barrientos, Antonio
Palafox, Pablo R. [0000-0002-5944-0938]
Garzón, Mario [0000-0001-6672-4827]
Valente, João Ricardo [0000-0002-6241-4124]
Roldán-Gómez, Juan Jesús [0000-0001-8863-4419]
Barrientos, Antonio [0000-0003-1691-3907]
Source :
Applied Sciences, Applied Sciences, MDPI, 2019, 9 (13), pp.2661. ⟨10.3390/app9132661⟩, Applied Sciences, Vol 9, Iss 13, p 2661 (2019), Volume 9, Issue 13, Applied Sciences, 9(13), Digital.CSIC. Repositorio Institucional del CSIC, instname, Applied Sciences 9 (2019) 13, Applied Sciences, 2019, 9 (13), pp.2661. ⟨10.3390/app9132661⟩
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

Robot cooperation is key in Search and Rescue (SaR) tasks. Frequently, these tasks take place in complex scenarios affected by different types of disasters, so an aerial viewpoint is useful for autonomous navigation or human tele-operation. In such cases, an Unmanned Aerial Vehicle (UAV) in cooperation with an Unmanned Ground Vehicle (UGV) can provide valuable insight into the area. To carry out its work successfully, such as multi-robot system requires the autonomous takeoff, tracking, and landing of the UAV on the moving UGV. Furthermore, it needs to be robust and capable of life-long operation. In this paper, we present an autonomous system that enables a UAV to take off autonomously from a moving landing platform, locate it using visual cues, follow it, and robustly land on it. The system relies on a finite state machine, which together with a novel re-localization module allows the system to operate robustly for extended periods of time and to recover from potential failed landing maneuvers. Two approaches for tracking and landing are developed, implemented, and tested. The first variant is based on a novel height-adaptive PID controller that uses the current position of the landing platform as the target. The second one combines this height-adaptive PID controller with a Kalman filter in order to predict the future positions of the platform and provide them as input to the PID controller. This facilitates tracking and, mainly, landing. Both the system as a whole and the re-localization module in particular have been tested extensively in a simulated environment (Gazebo). We also present a qualitative evaluation of the system on the real robotic platforms, demonstrating that our system can also be deployed on real robotic platforms. For the benefit of the community, we make our software open source.<br />The research leading to these results received funding from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+Den la Comunidad de Madrid” and cofunded by Structural Funds of the EU, and from the project DPI2014-56985-R (Robotic protection of critical infrastructures), financed by the Ministry of Economy and Competitiveness of the Government of Spain.

Details

ISSN :
20763417
Database :
OpenAIRE
Journal :
Applied Sciences, Applied Sciences, MDPI, 2019, 9 (13), pp.2661. ⟨10.3390/app9132661⟩, Applied Sciences, Vol 9, Iss 13, p 2661 (2019), Volume 9, Issue 13, Applied Sciences, 9(13), Digital.CSIC. Repositorio Institucional del CSIC, instname, Applied Sciences 9 (2019) 13, Applied Sciences, 2019, 9 (13), pp.2661. ⟨10.3390/app9132661⟩
Accession number :
edsair.doi.dedup.....50747b6ea00072e442bfe0ab6b92a909
Full Text :
https://doi.org/10.3390/app9132661⟩