Back to Search
Start Over
Derin Öğrenme ile Resim ve Videolarda Nesnelerin Tanınması ve Takibi
- Source :
- Volume: 31, Issue: 2 571-581, Fırat Üniversitesi Mühendislik Bilimleri Dergisi
- Publication Year :
- 2019
- Publisher :
- Fırat University, 2019.
-
Abstract
- Görüntü işleme yöntemleri kullanılarak durağan görüntülerin analizleri gerçekleştirilebilir ve söz konusu görüntülerden anlamlı bilgiler çıkarılabilir. Tespit ve tanıma sonrasında takip edilecek olan nesnenin değişken bir ortam içinde bulunması zorlaştırıcı unsurlardan birisidir. Bunun gibi zorlaştırıcı unsurlarla başa çıkabilmek ve nesne takibini başarıyla gerçekleştirebilmek için farklı yöntemler geliştirilmiştir. Askeri uygulamalarda yaygın olarak kullanılan elektro-optik algılayıcı sistemleri hareketli ve sabit hedeflerin belirlenmesini sağlamaktadır. Son yıllarda yapay zekâ tabanlı bileşenlerle güçlendirilen bu sistemler hem daha hızlı hem de daha kesin hedef tespiti yapmayı sağlamaktadır. Öte yandan, derin öğrenme algoritmaları yapay zekâ alanında bir devrim yaratmıştır. Derin öğrenme algoritmalarının görüntü işlemede kullanılması oldukça başarılı sonuçlar alınmasını ve karmaşık görüntü işleme problemlerinin kolaylıkla çözüme kavuşturulabilmesini sağlamaktadır. Bu çalışmada derin öğrenme ile hareketli nesne tanıma ve takibi için Google’ın açık kaynak kodlu makine öğrenmesi kütüphanesi olan TensorFlow kullanılmıştır. Nesne takibi için Region Based Convolutional Networks kütüphanesinden Faster R-CNN modeli ele alınmıştır. Bu kütüphaneler ile durağan görüntüler, video görüntüleri ve webcam görüntüleri üzerinde nesne tanıma işlemi gerçekleştirilmiş ve incelenen kütüphanelerin güçlü ve zayıf yönleri ortaya konmuştur.
Details
- Language :
- Turkish
- ISSN :
- 13089072
- Database :
- OpenAIRE
- Journal :
- Volume: 31, Issue: 2 571-581, Fırat Üniversitesi Mühendislik Bilimleri Dergisi
- Accession number :
- edsair.doi.dedup.....50d889ab81506bab0a1a418305200f62