Back to Search Start Over

The Complexity of Counting Problems Over Incomplete Databases

Authors :
Marcelo Arenas
Mikaël Monet
Pablo Barceló
Pontificia Universidad Católica de Chile (UC)
Millennium Institute for Foundational Research on Data (IMFD)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Linking Dynamic Data (LINKS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Université de Lille-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
ACM Transactions on Computational Logic, ACM Transactions on Computational Logic, Association for Computing Machinery, 2021, 22 (4), pp.1-52. ⟨10.1145/3461642⟩, ACM Transactions on Computational Logic, 2021, 22 (4), pp.1-52. ⟨10.1145/3461642⟩
Publication Year :
2021
Publisher :
Association for Computing Machinery (ACM), 2021.

Abstract

We study the complexity of various fundamental counting problems that arise in the context of incomplete databases, i.e., relational databases that can contain unknown values in the form of labeled nulls. Specifically, we assume that the domains of these unknown values are finite and, for a Boolean query $q$, we consider the following two problems: given as input an incomplete database $D$, (a) return the number of completions of $D$ that satisfy $q$; or (b) return the number of valuations of the nulls of $D$ yielding a completion that satisfies $q$. We obtain dichotomies between \#P-hardness and polynomial-time computability for these problems when $q$ is a self-join-free conjunctive query, and study the impact on the complexity of the following two restrictions: (1) every null occurs at most once in $D$ (what is called Codd tables); and (2) the domain of each null is the same. Roughly speaking, we show that counting completions is much harder than counting valuations: for instance, while the latter is always in \#P, we prove that the former is not in \#P under some widely believed theoretical complexity assumption. Moreover, we find that both (1) and (2) can reduce the complexity of our problems. We also study the approximability of these problems and show that, while counting valuations always has a fully polynomial-time randomized approximation scheme (FPRAS), in most cases counting completions does not. Finally, we consider more expressive query languages and situate our problems with respect to known complexity classes.<br />Comment: 51 pages, including 43 pages of main text. Extended version of arXiv:1912.11064. Up to the stylesheet, page/environment numbering, minor formatting, and publisher-induced changes, this is the exact content of the paper in ACM Transactions on Computational Logic

Details

ISSN :
1557945X and 15293785
Volume :
22
Database :
OpenAIRE
Journal :
ACM Transactions on Computational Logic
Accession number :
edsair.doi.dedup.....512546a88ece491fee19a60b0ab19aea
Full Text :
https://doi.org/10.1145/3461642