Back to Search
Start Over
Melatonin modulates metabolic remodeling in HNSCC by suppressing MTHFD1L-formate axis
- Source :
- Journal of pineal researchREFERENCES. 71(4)
- Publication Year :
- 2021
-
Abstract
- Metabolic remodeling is now widely recognized as a hallmark of cancer, yet its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. In this study, metabolomic analysis of melatonin-treated HNSCC cell lines revealed that exogenous melatonin inhibited many important metabolic pathways including folate cycle in HNSCC cells. Methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L), a metabolic enzyme of the folate cycle regulating the production of formate, was identified as a downstream target of melatonin. MTHFD1L was found to be markedly upregulated in HNSCC, and MTHFD1L overexpression was significantly associated with unfavorable clinical outcome of HNSCC patients. In addition, MTHFD1L promoted HNSCC progression in vitro and in vivo and reversed the oncostatic effects of exogenous melatonin. More importantly, the malignant phenotypes suppressed by knockdown of MTHFD1L or exogenous melatonin could be partially rescued by formate. Furthermore, we found that melatonin inhibited the expression of MTHFD1L in HNSCC cells through the downregulation of cyclic AMP-responsive element-binding protein 1 (CREB1) phosphorylation. Lastly, this novel regulatory axis of melatonin-p-CREB1-MTHFD1L-formate was also verified in HNSCC tissues. Collectively, our findings have demonstrated that MTHFD1L-formate axis promotes HNSCC progression and melatonin inhibits HNSCC progression through CREB1-mediated downregulation of MTHFD1L and formate. These findings have revealed new metabolic mechanisms in HNSCC and may provide novel insights on the therapeutic intervention of HNSCC.
- Subjects :
- Formates
Melatonin
Formate-Tetrahydrofolate Ligase
Endocrinology
stomatognathic system
Downregulation and upregulation
Aminohydrolases
Multienzyme Complexes
Cell Line, Tumor
otorhinolaryngologic diseases
medicine
Humans
neoplasms
Methylenetetrahydrofolate Dehydrogenase (NADP)
Gene knockdown
biology
Chemistry
Squamous Cell Carcinoma of Head and Neck
medicine.disease
Head and neck squamous-cell carcinoma
Gene Expression Regulation, Neoplastic
stomatognathic diseases
Cell culture
Head and Neck Neoplasms
Methylenetetrahydrofolate dehydrogenase
Cancer research
biology.protein
Phosphorylation
CREB1
medicine.drug
Subjects
Details
- ISSN :
- 1600079X
- Volume :
- 71
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of pineal researchREFERENCES
- Accession number :
- edsair.doi.dedup.....514a17a76b3877052a0fd8d4a2222088