Back to Search
Start Over
A study on blood–brain barrier ultrastructural changes induced by cerebral hypoperfusion of different stages
- Source :
- Neurological Research. 28:50-58
- Publication Year :
- 2006
- Publisher :
- Informa UK Limited, 2006.
-
Abstract
- To evaluate the ultrastructural changes in the blood-brain barrier (BBB) induced by cerebral hypoperfusion of different stages, which may predispose the brain to the formation of vasogenic edema and hemorrhage under cerebral luxury perfusion.Twenty cerebral steal models with left neck arteriovenous fistula (AVF) were surgically created in Wistar's rats, leading to a noninfarctional reduction in the cerebral blood flow (CBF) by between 25 and 50%, resulting in cerebral hypoperfusion in the AVF side for 3 days (acute stage), 3 weeks (subacute stage) and 3 months (chronic stage), respectively. Another six sham-operated models were made in age-matched rats as control. The BBB ultrastructural changes were assessed by transmission electron microscopy. Ridit analysis was conducted to compare the positive ratio of ultrastructural changes among multiple groups.Electron microscopy demonstrated no ultrastructural change at the acute stage, however, at the subacute stage, slight vacuolar degeneration was found in the astrocytic foot process layer encircling the capillaries; furthermore, at the chronic stage, the astrocytic foot processes expressed marked vacuolization associated with the adjacent astrocytic degeneration. Meanwhile, in both capillary endothelium and basal lamina layers, no abnormal ultrastructures similar to those in the astrocytic foot processes layer were identified. After cerebral luxury perfusion took place, BBB was disrupted where astrocytic foot processes vacuolization was most distinguished.Astrocytes generate ultrastructural abnormality as a result of chronic cerebral hypoperfusion. Astrocytic foot process vacuolization, which constitutes the major ultrastructural change in the BBB, is the extension of the degeneration of astrocyte body. It is inferred that BBB is prone to structure weakness and function instability, which forms the morphological basis of cerebral luxury perfusion.
- Subjects :
- Intracranial Arteriovenous Malformations
Pathology
medicine.medical_specialty
Time Factors
Arteriovenous fistula
Blood–brain barrier
Statistics, Nonparametric
Brain Ischemia
Brain ischemia
Microscopy, Electron, Transmission
medicine
Animals
Luxury perfusion
Rats, Wistar
Chronic stage
Cerebral hypoperfusion
business.industry
General Medicine
medicine.disease
Rats
Disease Models, Animal
medicine.anatomical_structure
Neurology
Cerebral blood flow
Blood-Brain Barrier
Astrocytes
Chronic Disease
Ultrastructure
Neurology (clinical)
business
Subjects
Details
- ISSN :
- 17431328 and 01616412
- Volume :
- 28
- Database :
- OpenAIRE
- Journal :
- Neurological Research
- Accession number :
- edsair.doi.dedup.....5168dcd608710245d98f462e06dcd1e5
- Full Text :
- https://doi.org/10.1179/016164106x91870