Back to Search Start Over

A Theoretical Investigation into the Luminescent Properties of d 8 ‐Transition‐Metal Complexes with Tetradentate Schiff Base Ligands

Authors :
Pui Keong Chow
Wai-Pong To
Wai Ming Kwok
Chi-Ming Che
Glenna So Ming Tong
Source :
Chemistry – A European Journal. 20:6433-6443
Publication Year :
2014
Publisher :
Wiley, 2014.

Abstract

A theoretical investigation on the luminescence efficiency of a series of d(8) transition-metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M-salen](n) complexes (salen = N,N'-bis(salicylidene)ethylenediamine; M = Pt, Pd (n = 0); Au (n = +1)) in acetonitrile solutions at room temperature: [Pt-salen] is phosphorescent and [Au-salen](+) is fluorescent, but [Pd-salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron-withdrawing groups at the 4-position of the Schiff base ligand should widen the (3)MLCT-(3)MC gap (MLCT = metal-to-ligand charge transfer and MC = metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding Pd(II) Schiff base complex. Although it is experimentally proven that [Pd-salph-4E] (salph = N,N'-bis(salicylidene)-1,2-phenylenediamine; 4E means an electron-withdrawing substituent at the 4-position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding Pt(II) Schiff base complex, [Pt-salph-4E], is also much less emissive than the unsubstituted analogue, [Pt-salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M-salph-X] (X is a substituent on the salph ligand, M = Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low-frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin-orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well.

Details

ISSN :
15213765 and 09476539
Volume :
20
Database :
OpenAIRE
Journal :
Chemistry – A European Journal
Accession number :
edsair.doi.dedup.....51842d8de02ad832dea9c2b3d6c9eab7
Full Text :
https://doi.org/10.1002/chem.201304375