Back to Search
Start Over
Partially ample line bundles on toric varieties
- Source :
- Glasgow Mathematical Journal 58 (2016), Nr. 3
- Publication Year :
- 2012
- Publisher :
- arXiv, 2012.
-
Abstract
- In this note we study properties of partially ample line bundles on simplicial projective toric varieties. We prove that the cone of q-ample line bundles is a union of rational polyhedral cones, and calculate these cones in examples. We prove a restriction theorem for big q-ample line bundles, and deduce that q-ampleness of the anticanonical bundle is not invariant under flips. Finally we prove a Kodaira-type vanishing theorem for q-ample line bundles.<br />Comment: 12 pages, 2 figures; v.2: proofs simplified, lots of material added, new author
- Subjects :
- Pure mathematics
General Mathematics
Algebraic geometry
01 natural sciences
Mathematics - Algebraic Geometry
Computer Science::Emerging Technologies
Mathematics::Algebraic Geometry
0103 physical sciences
FOS: Mathematics
0101 mathematics
ddc:510
Kodaira-type vanishing theorem
Mathematics::Symplectic Geometry
Algebraic Geometry (math.AG)
Mathematics
14M25, 14F05
Computer Science::Information Retrieval
010102 general mathematics
Extension (predicate logic)
Cohomology
Dewey Decimal Classification::500 | Naturwissenschaften::510 | Mathematik
Line (geometry)
010307 mathematical physics
Variety (universal algebra)
q-ample line bundles
toric varieties
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Glasgow Mathematical Journal 58 (2016), Nr. 3
- Accession number :
- edsair.doi.dedup.....51aedf0376e8c8286a0b94345bd3b3f2
- Full Text :
- https://doi.org/10.48550/arxiv.1202.3065