Back to Search
Start Over
Auslander's formula and correspondence for exact categories
- Source :
- Advances in Mathematics. 401:108296
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $\mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $\mathcal{E}$ are reflected in $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ as a subcategory of $\operatorname{mod}(\mathcal{E})$ when $\mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $\mathcal{C}$ and certain resolving subcategories of $\operatorname{mod}(\mathcal{C})$.<br />36 pages, comments welcome!
Details
- ISSN :
- 00018708
- Volume :
- 401
- Database :
- OpenAIRE
- Journal :
- Advances in Mathematics
- Accession number :
- edsair.doi.dedup.....51b3105e24fc82756e17342fef272fca
- Full Text :
- https://doi.org/10.1016/j.aim.2022.108296