Back to Search Start Over

Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation

Authors :
Miguel Angel Mañanas
Hamid Reza Marateb
Dario Farina
Mónica Rojas
Morteza Farahi
Phillips, William D
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
Source :
Repositorio U. El Bosque, Universidad El Bosque, instacron:Universidad El Bosque, PLoS ONE, Vol 11, Iss 12, p e0167954 (2016), PLoS ONE, PLoS One, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, instname
Publication Year :
2016
Publisher :
Public Library of Science, 2016.

Abstract

Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the Seventh Framework Programme of the European Union (FP7/2007-2013) under REA grant agreement no. 600388 (TECNIOspring programme), from the Agency for Business Competitiveness of the Government of Catalonia, ACCIÓ, and from Spanish Ministry of Economy and Competitiveness- Spain (project DPI2014-59049-R).

Details

Language :
English
ISSN :
19326203
Database :
OpenAIRE
Journal :
Repositorio U. El Bosque, Universidad El Bosque, instacron:Universidad El Bosque, PLoS ONE, Vol 11, Iss 12, p e0167954 (2016), PLoS ONE, PLoS One, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, instname
Accession number :
edsair.doi.dedup.....51c0fab8c765cd87e2c79831807fdeb5