Back to Search Start Over

Famille admise associée à une valuation de K(X)

Authors :
Michel Vaquié
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
ANR-17-CE40-0014,CatAG,Catégorification en géométrie algébrique(2017)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Source :
Bulletin of the London Mathematical Society, Bulletin of the London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩, Bulletin of the London Mathematical Society, London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Let K be a field with a valuation $\nu$ and let L = K(x) be a transcendental extension of K, then any valuation $\mu$ of L which extends $\nu$ is determined by its restriction to the polynomial ring K[x]. We know how to associate to this valuation $\mu$ a family of valuations A = ($\mu$i)i$\in$I of K[x], called the associated admise family, which converges in a certain sense towards the valuation $\mu$. Although the definition of this family, as well as the notion of convergence, essentially imply the structure of the polynomial ring, in particular the degree of polynomials, we show in this note that the family A of valuations of L do not depend on the chosen generator x.<br />Comment: in French

Details

Language :
French
ISSN :
00246093 and 14692120
Database :
OpenAIRE
Journal :
Bulletin of the London Mathematical Society, Bulletin of the London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩, Bulletin of the London Mathematical Society, London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩
Accession number :
edsair.doi.dedup.....51c24992d47f16c03bf916bf322dc798
Full Text :
https://doi.org/10.1112/blms.12378⟩