Back to Search
Start Over
Famille admise associée à une valuation de K(X)
- Source :
- Bulletin of the London Mathematical Society, Bulletin of the London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩, Bulletin of the London Mathematical Society, London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- Let K be a field with a valuation $\nu$ and let L = K(x) be a transcendental extension of K, then any valuation $\mu$ of L which extends $\nu$ is determined by its restriction to the polynomial ring K[x]. We know how to associate to this valuation $\mu$ a family of valuations A = ($\mu$i)i$\in$I of K[x], called the associated admise family, which converges in a certain sense towards the valuation $\mu$. Although the definition of this family, as well as the notion of convergence, essentially imply the structure of the polynomial ring, in particular the degree of polynomials, we show in this note that the family A of valuations of L do not depend on the chosen generator x.<br />Comment: in French
- Subjects :
- Computer Science::Computer Science and Game Theory
Mathematics::Commutative Algebra
General Mathematics
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
010102 general mathematics
extension
Mathematics - Commutative Algebra
01 natural sciences
Valuation (logic)
Mathematics - Algebraic Geometry
13A18, 12J10, 14E15
famille admise
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
0101 mathematics
[MATH]Mathematics [math]
Humanities
valuation
ComputingMilieux_MISCELLANEOUS
Mathematics
Subjects
Details
- Language :
- French
- ISSN :
- 00246093 and 14692120
- Database :
- OpenAIRE
- Journal :
- Bulletin of the London Mathematical Society, Bulletin of the London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩, Bulletin of the London Mathematical Society, London Mathematical Society, 2020, 52 (5), pp.977-992. ⟨10.1112/blms.12378⟩
- Accession number :
- edsair.doi.dedup.....51c24992d47f16c03bf916bf322dc798
- Full Text :
- https://doi.org/10.1112/blms.12378⟩