Back to Search Start Over

Insights into the Mechanism of the Mechanochemical Formation of Metastable Phases

Authors :
Jules Galipaud
Thierry LeMogne
Daniel Long
Yufu Xu
Dustin Olson
Wilfred T. Tysoe
Resham Rana
Paul G. Kotula
Source :
ACS Applied Materials & Interfaces. 13:6785-6794
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

The mechanochemical reaction kinetics of sulfur with copper to form a metastable copper sulfide phase at room temperature is investigated in ultrahigh vacuum by modifying the properties of the copper during cleaning in vacuum. The measured kinetics is in agreement with a theory first proposed by Karthikeyan and Rigney that predicts that the rate depends linearly both on the contact time and on the strain-rate sensitivity of the substrate. The mechanism for this process was investigated using thin samples of copper fabricated using a focused-ion-beam and by measuring the crystal structure and elemental composition of the copper subsurface region by electron microscopy after reaction. The measured sulfur depth distributions produced by shear-induced surface-to-bulk transport were in good agreement with values calculated using rate constants that also model the reaction kinetics. Sulfur was found both in crystalline regions and also concentrated along grain boundaries, implying that formation of metastable phases is facilitated by both the presence of dislocations and by grain boundaries.

Details

ISSN :
19448252 and 19448244
Volume :
13
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....520efa796391e5eb68ced49d8fc5acef
Full Text :
https://doi.org/10.1021/acsami.0c18980