Back to Search
Start Over
Bioenergy Production through Mono and Co-Digestion of Tomato Residues
- Source :
- Energies, Volume 14, Issue 17, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Energies, Vol 14, Iss 5563, p 5563 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI, 2021.
-
Abstract
- The agro-industry of tomato generates three types of residues: ripe rotten tomato (unfit for consumption) (RT), green (unripe) tomato (GT), and tomato branches including leaves and stems (TB). These materials are commonly wasted or used as feed for livestock. Energy production through anaerobic digestion is an alternative way to manage and simultaneously valorise these materials. Initially, the operating conditions of mono anaerobic digestion were investigated using RT. Thus, a design of experiments based on a two-level fractional factorial design with resolution V was performed to determine the factors that affect biochemical methane potential (BMP). The substrate to inoculum ratio (SIR), total volatile solids concentration (VSt), working volume (WV), presence of nutrients (Nu), and the pre-incubation of the inoculum (Inc) were investigated. The results showed that SIR is the most important factor. The maximum BMP for RT was 297 NmLCH4/gVS with SIR = 0.5<br />tVS = 20 g/L<br />WV = 20%<br />no pre-incubation and the presence of nutrients. Using these optimum operating conditions, co-digestion was investigated through a mixture design approach. The substrates RT and GT presented similar BMP values, whereas TB led to a significantly lower BMP. Indeed, when high concentrations of TB were used, a significant decrease in methane production was observed. Nonetheless, the highest BMP was achieved with a mixture of 63% RT + 20% GT + 17% TB, with a production of 324 NmLCH4/gVS, corresponding to a synergetic co-digestion performance index of about 1.20. In general, although the substrate RT generates the highest BMP, the mixture with GT did not impair the methane yield. Overall, the co-digestion of tomato residues must be conducted with SIR close to 0.5 and the content of tomato branches in the reaction mixture should be kept low (up to 20%).
- Subjects :
- anaerobic digestion
Technology
Control and Optimization
Agro-industrial residues
Energy Engineering and Power Technology
Co-digestion
agro-industrial residues
Nutrient
Bioenergy
Anaerobic digestion
co-digestion
Food science
Electrical and Electronic Engineering
Methane production
Engineering (miscellaneous)
biochemical methane potential
Renewable Energy, Sustainability and the Environment
Chemistry
food and beverages
Fractional factorial design
Substrate (chemistry)
design of experiments
Volume (thermodynamics)
Biochemical methane potential
Co digestion
Design of experiments
Energy (miscellaneous)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Energies, Volume 14, Issue 17, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Energies, Vol 14, Iss 5563, p 5563 (2021)
- Accession number :
- edsair.doi.dedup.....52cdb8b9534e09e38bab9a879feda21e