Back to Search Start Over

Extending polynomials in maximal and minimal ideals

Authors :
Daniel Carando
Daniel Galicer
Source :
CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Publ. Res. Inst. Math. Sci. 2010;46(3):669-680, Biblioteca Digital (UBA-FCEN), Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, instacron:UBA-FCEN
Publication Year :
2010
Publisher :
Kyoto Univeristy, 2010.

Abstract

Given an homogeneous polynomial on a Banach space $E$ belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of $E$ and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allow us to obtain symmetric versions of some basic results of the metric theory of tensor products.<br />Comment: 13 pages

Details

Language :
English
Database :
OpenAIRE
Journal :
CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Publ. Res. Inst. Math. Sci. 2010;46(3):669-680, Biblioteca Digital (UBA-FCEN), Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, instacron:UBA-FCEN
Accession number :
edsair.doi.dedup.....52fcbda1013c80e5a6d56a73097c7ff9