Back to Search
Start Over
Extending polynomials in maximal and minimal ideals
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Publ. Res. Inst. Math. Sci. 2010;46(3):669-680, Biblioteca Digital (UBA-FCEN), Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, instacron:UBA-FCEN
- Publication Year :
- 2010
- Publisher :
- Kyoto Univeristy, 2010.
-
Abstract
- Given an homogeneous polynomial on a Banach space $E$ belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of $E$ and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allow us to obtain symmetric versions of some basic results of the metric theory of tensor products.<br />Comment: 13 pages
- Subjects :
- Pure mathematics
Matemáticas
General Mathematics
Minimal ideal
Ideal norm
SYMMETRIC TENSOR PRODUCTS OF BANACH SPACES
Matemática Pura
purl.org/becyt/ford/1 [https]
POLYNOMIAL IDEALS
Minimal polynomial (field theory)
Symmetric polynomial
FOS: Mathematics
46G25, 46A32, 46B28, 47H60
Mathematics
Discrete mathematics
Mathematics::Functional Analysis
Power sum symmetric polynomial
Mathematics::Commutative Algebra
purl.org/becyt/ford/1.1 [https]
Complete homogeneous symmetric polynomial
Functional Analysis (math.FA)
Mathematics - Functional Analysis
EXTENSION OF POLYNOMIALS
Homogeneous polynomial
Elementary symmetric polynomial
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Publ. Res. Inst. Math. Sci. 2010;46(3):669-680, Biblioteca Digital (UBA-FCEN), Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, instacron:UBA-FCEN
- Accession number :
- edsair.doi.dedup.....52fcbda1013c80e5a6d56a73097c7ff9