Back to Search Start Over

Lake equations with an evanescent or emergent island

Authors :
Lars Eric Hientzsch
Christophe Lacave
Evelyne Miot
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
ANR-15-IDEX-0002,UGA,IDEX UGA(2015)
ANR-18-CE40-0027,SingFlows,Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure(2018)
ANR-15-CE40-0011,INFAMIE,Fluides inhomogènes : modèles asymptotiques et évolution d'interfaces(2015)
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)
ANR-15-IDEX-0002,UGA,Risk @ Univ. Grenoble Alpes(2015)
Source :
Communications in Mathematical Sciences, Communications in Mathematical Sciences, International Press, In press
Publication Year :
2022
Publisher :
International Press of Boston, 2022.

Abstract

International audience; We study the asymptotic dynamics of the lake equations in the following two cases, an island shrinking to a point and an emerging island. For both cases, we derive an asymptotic lake-type equation. In the former case, the asymptotic dynamics includes an additional Dirac mass in the vorticity. The main mathematical difficulty is that the equations are singular when the water depth vanishes. We provide new uniform estimates in weighted spaces for the related stream functions which will imply the compactness result.

Details

ISSN :
19450796 and 15396746
Volume :
20
Database :
OpenAIRE
Journal :
Communications in Mathematical Sciences
Accession number :
edsair.doi.dedup.....535677da674aa775ffec07f9c5cf829a
Full Text :
https://doi.org/10.4310/cms.2022.v20.n1.a3