Back to Search
Start Over
An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
- Source :
- NeuroImage. 31:968-980
- Publication Year :
- 2006
- Publisher :
- Elsevier BV, 2006.
-
Abstract
- In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.
- Subjects :
- Adult
Male
Aging
Intraclass correlation
Cognitive Neuroscience
Statistics as Topic
Image processing
Corpus Callosum
Imaging, Three-Dimensional
Alzheimer Disease
mental disorders
Image Processing, Computer-Assisted
medicine
Humans
Computer vision
Functional studies
Dominance, Cerebral
Gyrification
Aged
Aged, 80 and over
Cerebral Cortex
Observer Variation
Brain Mapping
Human Connectome Project
medicine.diagnostic_test
business.industry
Reproducibility of Results
Magnetic resonance imaging
Pattern recognition
Middle Aged
Magnetic Resonance Imaging
medicine.anatomical_structure
nervous system
Neurology
Cerebral cortex
Connectome
Female
Artificial intelligence
Atrophy
Psychology
business
Algorithms
Software
Subjects
Details
- ISSN :
- 10538119
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- NeuroImage
- Accession number :
- edsair.doi.dedup.....53aa9f7aa0de5fb18e5ff840e27ce10b
- Full Text :
- https://doi.org/10.1016/j.neuroimage.2006.01.021