Back to Search Start Over

Spatial genomics maps the structure, nature and evolution of cancer clones

Authors :
Artem Lomakin
Jessica Svedlund
Carina Strell
Milana Gataric
Artem Shmatko
Gleb Rukhovich
Jun Sung Park
Young Seok Ju
Stefan Dentro
Vitalii Kleshchevnikov
Vasyl Vaskivskyi
Tong Li
Omer Ali Bayraktar
Sarah Pinder
Andrea L. Richardson
Sandro Santagata
Peter J. Campbell
Hege Russnes
Moritz Gerstung
Mats Nilsson
Lucy R. Yates
Source :
Nature. 611:594-602
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1–3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.

Details

ISSN :
14764687 and 00280836
Volume :
611
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....53d07de3d7231c99d60cc6a1b6946694
Full Text :
https://doi.org/10.1038/s41586-022-05425-2