Back to Search
Start Over
Lithium Isotope Measurement Using Laser-Induced Breakdown Spectroscopy and Chemometrics
- Source :
- Applied Spectroscopy. 75:199-207
- Publication Year :
- 2020
- Publisher :
- SAGE Publications, 2020.
-
Abstract
- Laser-induced breakdown spectroscopy (LIBS) is a technique capable of portable, quantitative elemental analysis; however, quantitative isotopic determination of samples in situ has not yet been demonstrated. This research demonstrates the ability of LIBS to quantitatively determine concentrations of 6Li in solid samples of lithium hydroxide monohydrate in a nominally 40 mTorr argon environment using chemometrics. Three chemometric analysis techniques (principal component regression, partial least squares regression, and neural networks analysis) are applied to spectra collected using a spectrometer with modest resolving power (λ/Δλ ≈ 27 000). This analysis suggests that bulk lithium isotopic assay can be determined using LIBS to within a 95% confidence interval in minutes to an hour for enrichment levels ranging from 3% to 85%. This has direct applications for the nuclear safeguards and geological exploration communities and others that desire a portable, stable isotope analytical technique. Additionally, isotope-specific self-absorption of atomic emission in a laser-produced plasma is observed for the first time.
- Subjects :
- Materials science
Isotopes of lithium
010401 analytical chemistry
Atomic emission spectroscopy
Analytical chemistry
chemistry.chemical_element
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Chemometrics
chemistry
Elemental analysis
Partial least squares regression
Lithium
Laser-induced breakdown spectroscopy
0210 nano-technology
Spectroscopy
Instrumentation
Subjects
Details
- ISSN :
- 19433530 and 00037028
- Volume :
- 75
- Database :
- OpenAIRE
- Journal :
- Applied Spectroscopy
- Accession number :
- edsair.doi.dedup.....53f50602e4762aad021d69086e9e2f83
- Full Text :
- https://doi.org/10.1177/0003702820953205