Back to Search Start Over

Visual Completion Of 3D Object Shapes From A Single View For Robotic Tasks

Authors :
Youcef Mezouar
Juan-Antonio Corrales-Ramon
Carlos M. Mateo
Pablo Gil
Mohamed Tahoun
Omar Tahri
Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Universidad de Alicante
Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Universidad de Alicante. Instituto Universitario de Investigación Informática
Automática, Robótica y Visión Artificial
Source :
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec 2019, Dali, China. pp.1777-1782, ⟨10.1109/ROBIO49542.2019.8961378⟩, ROBIO
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; The goal of this paper is to predict 3D object shape to improve the visual perception of robots in grasping and manipulation tasks. The planning of image-based robotic manipulation tasks depends on the recognition of the object's shape. Mostly, the manipulator robots usually use a camera with configuration eye-in-hand. This fact limits the calculation of the grip on the visible part of the object. In this paper, we present a 3D Deep Convolutional Neural Network to predict the hidden parts of objects from a single-view and to accomplish recovering the complete shape of them. We have tested our proposal with both previously seen objects and novel objects from a well-known dataset.

Details

Language :
English
Database :
OpenAIRE
Journal :
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec 2019, Dali, China. pp.1777-1782, ⟨10.1109/ROBIO49542.2019.8961378⟩, ROBIO
Accession number :
edsair.doi.dedup.....544bdbf5b6e2d1997ebc9bbb86e3c4c2
Full Text :
https://doi.org/10.1109/ROBIO49542.2019.8961378⟩