Back to Search Start Over

Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses

Authors :
Yan Wang
Huanquan Zheng
Mengzhu Lu
Jin Zhang
Bobin Liu
Li Zhang
Jun Chen
Jianbo Li
Source :
BMC Genomics
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Background Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Results Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. Conclusions The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1398-3) contains supplementary material, which is available to authorized users.

Details

ISSN :
14712164
Volume :
16
Database :
OpenAIRE
Journal :
BMC Genomics
Accession number :
edsair.doi.dedup.....54a1597c3be3df128393df1213974422