Back to Search Start Over

Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants

Authors :
Thomas A. Desautels
Kathryn T. Arrildt
Adam T. Zemla
Edmond Y. Lau
Fangqiang Zhu
Dante Ricci
Stephanie Cronin
Seth J. Zost
Elad Binshtein
Suzanne M. Scheaffer
Bernadeta Dadonaite
Brenden K. Petersen
Taylor B. Engdahl
Elaine Chen
Laura S. Handal
Lynn Hall
John W. Goforth
Denis Vashchenko
Sam Nguyen
Dina R. Weilhammer
Jacky Kai-Yin Lo
Bonnee Rubinfeld
Edwin A. Saada
Tracy Weisenberger
Tek-Hyung Lee
Bradley Whitener
James B. Case
Alexander Ladd
Mary S. Silva
Rebecca M. Haluska
Emilia A. Grzesiak
Christopher G. Earnhart
Svetlana Hopkins
Thomas W. Bates
Larissa B. Thackray
Brent W. Segelke
Antonietta Maria Lillo
Shivshankar Sundaram
Jesse Bloom
Michael S. Diamond
James E. Crowe
Robert H. Carnahan
Daniel M. Faissol
Source :
bioRxiv : the preprint server for biology.
Publication Year :
2022

Abstract

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1–3, but also revealed how quickly viral escape can curtail effective options4, 5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including EvusheldTMand its constituent, cilgavimab4, 6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protectionin vivoagainst the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

Details

Database :
OpenAIRE
Journal :
bioRxiv : the preprint server for biology
Accession number :
edsair.doi.dedup.....54ff1afccb0a13a81d61afc37c7aa6a7